

2026 FIRST® Robotics Competition

KitBot Java Software Guide

Rev. Dec. 23, 2025 2 of 27

1 Contents
2 Document Overview ... 4

3 Getting Started with your KitBot code ... 5

3.1 Wiring your robot .. 5

3.2 Configuring hardware and development environment .. 5

3.3 Opening the 2026 KitBot Example ... 5

3.4 Spark MAX firmware update and CAN IDs .. 5

3.5 Installing REVLib .. 6

3.6 Deploying and testing the KitBot Example .. 6

3.7 Configuring Gamepads .. 7

3.8 What does the code do?... 7

4 Overall Code Structure ... 8

4.1 Ways of creating commands .. 8

5 Code Walkthrough .. 9

5.1 Subsystems .. 9

5.1.1 CANDriveSubsystem ... 9

5.1.2 CANFuelSubsystem ... 11

5.2 Commands ... 12

5.3 Class Commands... 12

5.3.1 DriveCommand ... 13

5.3.2 Eject/Intake/Launch/Spinup .. 14

5.3.3 ExampleAuto and Launch Sequence.. 16

5.4 Inline Commands .. 16

5.4.1 Drive Command Factory .. 16

5.4.2 Fuel Command Factories ... 17

5.4.3 Autos ... 17

5.5 Constants ... 18

5.6 Robot .. 18

5.7 RobotContainer ... 18

5.7.1 Imports ... 18

Rev. Dec. 23, 2025 3 of 27

5.7.2 Class definition and Constructor .. 19

5.7.3 configureBindings() ... 19

6 Tuning Robot Values ... 22

7 Making Changes .. 24

7.1 Changing buttons for actions .. 24

7.2 Changing Drive Axis Behavior ... 24

7.3 Changing Drive Type ... 26

7.4 Developing Autonomous Routines... 26

Rev. Dec. 23, 2025 4 of 27

2 Document Overview

This document will take you through how to get your 2026 KitBot up and running using the provided
Java example code. To avoid content duplication, this document frequently links to WPILib
documentation for accomplishing specific steps along the way. In addition to getting you up and
running with the provided code, this document will walk through the structure of that code so you can
understand how it operates. Finally, we’ll walk through some of the most likely changes you may wish
to make to the code and provide concrete examples of how to make those modifications.

To get started with the example code, or to make some of the modifications described, minimal
understanding of Java is required. The code and modification examples provided will likely provide
enough of a pattern to get you going. To understand the walkthrough, or to make modifications not
described in this document, a more thorough understanding of Java is likely required.

This document, and the provided example code, assumes the use of the SPARK MAX controllers
provided in the rookie Kickoff Kit.

Rev. Dec. 23, 2025 5 of 27

3 Getting Started with your KitBot code

3.1 Wiring your robot
Use the WPILib Zero-to-Robot wiring document to help you get your robot wired up. The KitBot wiring
and code is documented with the Control System components that have recently come in the Rookie
Kit of Parts (i.e. REV PDH and Spark MAX controllers), the KitBot wiring and code can be adapted to
other electronics, but that adaptation is not covered by these documents.

3.2 Configuring hardware and development environment
Before you are able to load code and test out your robot, you will need to configure your hardware
(roboRIO, radio, etc.) and get your development environment set up. Follow the WPILib Zero-to-Robot
guide steps 2 through 4 to get everything set up and ensure you can deploy a basic robot project.

3.3 Opening the 2026 KitBot Example
The 2026 KitBot example code is provided in a single zip file. The Java code contains two complete
projects which illustrate different ways of creating Commands. Some description of the difference can
be found in Ways of creating commands below. To open the Java code:

1. Download and unzip the Java example code. Make sure to unzip or copy to a permanent
location, not in a temporary folder.

2. Open WPILib VS Code using the Start menu or desktop shortcuts
3. In the top left click File->Open Folder and browse to the “Java” folder inside of the unzipped

example code, then open the desired one of the two example projects, and then click Select
Folder.

3.4 Spark MAX firmware update and CAN IDs
Before using the SPARK MAXs with CAN control, they each need to be assigned a unique ID.

1. Install the REV Hardware Client
2. With the robot powered off, connect a USB cable between the computer and the SPARK MAX

USB port. Leaving the robot powered off ensures only the single SPARK MAX is powered and
avoids changing the IDs on unintended devices.

3. Update the firmware on the SPARK MAX
4. Set the CAN ID and Motor Type (you can skip the current limit) and save the settings

a. CAN IDs for each device can be found in Constants.java. You can either set the devices
to match these IDs, or set the IDs as desired (some teams set the CAN ID = the channel
number the device is attached to on the PD) and then update these constants.

b. Note: If you wish to “Spin the motor” as described on that page, make sure the robot is
in a safe state to do so (wheels not touching the ground or table, all hands clear of the
robot).

5. Repeat for all 6 devices on the robot.

Rev. Dec. 23, 2025 6 of 27

6. While not required, if using the REV PDH you may wish to check that it has the latest firmware
at this time as well. Do not change the ID of the PDH off of the default, each device type has a
separate ID space and your PDH will not conflict with your SPARK MAX even if set to the same
ID.

Now that all your devices are configured, you can do a preliminary check that your CAN bus is wired
properly using the REV Hardware client. While plugged into any REV device on your CAN bus with a USB
cable, power on the robot and you should see all the other devices listed in the left pane of the REV
Hardware Client, under the CAN Bus heading. If you don’t see all of the devices, you likely have one or
more issues with your CAN bus wiring:

1. Verify that your CAN bus starts with the roboRIO and ends with a 120 ohm resistor, or the built
in terminator of a Power Distribution Hub or Power Distribution Panel (with the termination set
to On using the appropriate jumper or switch).

2. Check that your CAN bus connections all match yellow-yellow and green-green.
3. Check that all CAN wire connections are secure to each other and that the connectors are

securely installed in each SPARK Max
4. If you’re still having trouble, moving the USB connection around to different devices and seeing

what each device can “see” on the bus can help pinpoint the location of an issue.

3.5 Installing REVLib
The software library for the SPARK MAX in CAN mode is provided by the vendor (REV Robotics). There
are two ways you can do so:

1. Recommended - Install the library offline – This will ensure that the library persists on your
machine even if you don’t build new code for a while (online installations can be cleaned up
automatically by Gradle).

a. Download the latest version of REVLib using the link from the REV documentation. If the
version does not start with 2026, the 2026 version may not be available yet, you will
have to wait for it to be available to be able to build and test the KitBot code.

b. Unzip into the C:\Users\Public\wpilib\2026 directory on Windows and ~/wpilib/2026
directory on Unix-like systems.

c. Click the WPILib icon in the top right (looks like red and grey ‘<<>>’ symbol), and start
typing “Manage Vendor Libraries” and select that option when it appears, then select
“Install new libraries (offline)”, finally select the installed version of REVLib.

2. Install Online - While the computer is connected to the Internet, you can use the WPILib Vendor
Library manager inside VS Code to locate REVLib. If it does not appear, the 2026 version of
REVLib may be available yet, you will have to wait for it to be available to be able to build and
test the KitBot code.

3.6 Deploying and testing the KitBot Example
To deploy the example to your robot, you will need to set the Team Number on the project. Click the
WPILib icon in the top right corner of the VS Code window (Logo that looks like red and grey ‘<<>>’

Rev. Dec. 23, 2025 7 of 27

symbol) to open the WPILib prompt and start typing “Set Team Number” and select that option when it
appears. Enter your team number (no leading 0s – e.g. 123 or 9996) and press Enter.

You are now ready to deploy the KitBot example just like you deployed the test project in Step 4 of the
Zero-to-Robot guide.

Warning: Make sure you have space in all directions when operating a robot. Even with known code,
the robot may move with unexpected speed or in unexpected directions. Be prepared to Disable
(Enter) or E-stop (Spacebar) the robot if necessary. The 2026 KitBot code contains a simple
autonomous routine that will move the robot forwards at ½ speed for ¼ second (and then launch balls
for 10 seconds) when the robot is enabled in Autonomous mode.

3.7 Configuring Gamepads
The code is set up to use the Xbox controller class. The Logitech F310 gamepads provided in the Kit of
Parts will appear like Xbox controllers to the WPILib software if they are configured in the correct
mode. To set up the controllers, check that the switch on the back of the controller is set the ‘X’ setting.
Then when using the controller, make sure the LED next to the Mode button is off; if it is on, press the
Mode button to toggle it. When the Mode light is on, the controller swaps the function of the left
Analog stick and the D-pad.

3.8 What does the code do?
The provided code implements the following robot controls in Teleoperated:

- Driver controller is an Xbox Controller in Slot 0 of the Driver Station
o Controls the robot drivetrain using Split-stick Arcade Drive

 Y-axis (vertical) of left stick controls forward-back movement of drivetrain
 X-axis (horizontal) of right stick controls rotation of drivetrain
 The “front” of the robot from this code’s perspective is the intake side.

- Operator controller is an Xbox controller in Slot 1 of the Driver Station
o Controls the gamepiece rollers using the bumpers and buttons

 Left Bumper – Intakes gamepieces
 Right Bumper – Launches gamepieces by first running a spin-up sequence for 1

second and then launching for as long as the button is held.
 A-Button – Ejects gamepieces back out the intake.

Rev. Dec. 23, 2025 8 of 27

4 Overall Code Structure

The provided code utilizes the Command-Based programming structure provided by WPILib. This
structure breaks up the robot’s actuators into “subsystems” which are controlled by “commands” or
collections of commands (aptly name “command groups”). The Command-Based structure may be a bit
overkill for a robot of this complexity, but it scales very well for teams looking to add additional
functionality to their KitBot. Additionally, this code structure was used by over 60% of teams in 2024,
increasing the likelihood that teams around you may be able to provide assistance before or during the
event.

To read more about the Command-Based structure, see the Command-Based Programming chapter of
the WPILib documentation.

4.1 Ways of creating commands
There are multiple ways that you can define commands within the Command-Based structure. This
project uses two of these different types to provide exposure to what they would look like in a full
robot project. The common ways of creating commands that are utilized in this project are:

- Classes: Command/group is defined as its own class in its own file.
- Inline: Command/group is defined via a “Command Factory method” in the subsystem or a

separate static command class or is composed “inline” using lambda functions.

Traditional Inline
+ Generally easier to understand - Slightly high learning curve

- Modularity – Commands can be long
depending on the complexity

+ Modularity – Commands are broken down
into small pieces and strung together into
groups

- Boilerplate – Command classes require
subclassing and can be long

+ Boilerplate – Commands are written as
methods in the subsystem, meaning less
unnecessary code

- Organization – Having many Command
classes can cause clutter and slow
programmer’s efficiency

+ Organization – Commands are grouped
together based on the subsystems they
require, leading to fewer/no dedicated
Command classes

+ Debugging – Easier to debug due to more
defined structure and traditional logic

- Debugging – More difficult to debug due to
the lambda functions and command
compositions

Rev. Dec. 23, 2025 9 of 27

5 Code Walkthrough

5.1 Subsystems
As described in the What is Command-Based Programming article, “’subsystems’ represent
independently-controlled collections of robot hardware (such as motor controllers, sensors, pneumatic
actuators, etc.) that operate together”.

For the 2026 KitBot we have 6 motors that make up 2 subsystems, the Drivetrain, and the Fuel system.
The 4 motors in the drivetrain always need to be working together to move the robot around the field
and the Fuel motors must spin in coordinated ways to manipulate Fuel.

Sometimes the boundaries between subsystems may not be so clear, if you have an arm with a
shoulder and wrist joint and a set of motorized wheels on the end, is that all one subsystem or
multiple? The general rule of thumb to follow is think about what actions, or commands, you might
have to control the subsystems. Do you think you might want the two pieces to be controlled
independent of each other (i.e. run the intake in or out while moving the arm or wrist?). If you’re
unsure, err towards more smaller subsystems; you can always make commands that require multiple
subsystems but if you end up wanting separate commands to control a single subsystem at the same
time, you’ll have to refactor the subsystem to split it up.
5.1.1 CANDriveSubsystem

This class is the subsystem for the drivetrain.
5.1.1.1 Imports

This section declares what other classes or packages we need to reference within this code (imports). A
common practice is to add imports as you go; as you find yourself referencing a class you have not yet
imported, you can add an import for that class. The first group of imports in this subsystem is from the
REV Robotics library for various items we need to reference for the Spark MAXs. The second group is
WPILib classes (one for the type of drivetrain on the robot and one for subsystems) and the
DriveConstants section of the Constants file from this project. The constants import is a special import
called a static import that allows us to reference the constants using just their name, reducing clutter

Rev. Dec. 23, 2025 10 of 27

by not having to use “DriveConstants.” for each of them. Because the names of all of the variables in
the DriveConstants section are very unique, we can do this safely without likelihood of any confusion.

If you’re using the InlineCommands version of the project you’ll see a few more imports for some
WPILib Command classes as well as one at the top for a Java class called “DoubleSupplier” which is how
you’ll pass changing values into the commands.
5.1.1.2 Class declaration, and Member Variables

The first line of this image is the class declaration. This declares the name of our class and says that it’s
an extension of the SubsystemBase class. All subsystems should extend this class which provides some
utility functions regarding setting the name of the subsystem, registering it with the scheduler, and
sending information about it to the dashboard.
5.1.1.3 Constructor

The next section is the constructor. In the first part of the constructor we initialize any variables
contained in the subsystem. In the case of our drivetrain, we initialize the 4 motor controllers and add
one controller for each side into a WPILib DifferentialDrive object which describes the whole drivetrain.

The remainder of the constructor (not pictured) sets up the SparkMAXs for the drivetrain. One motor
on each side is set as a follower and directed to follow the leader, then the leader motors are
configured with some additional details. Review the comments for what settings are being configured
and why.
5.1.1.4 Methods

The remainder of the subsystem class is methods. Here we define any methods that commands may
need to call to get status from or perform actions on the subsystem. For our simple drivetrain, the only

Rev. Dec. 23, 2025 11 of 27

method we need is the arcadeDrive method which simply passes the parameters through to the same
method on the DifferentialDrive object.

In the InlineCommands version of the project this method will look a little different, for more detail see
the Inline Commands section.
5.1.2 CANFuelSubsystem

This class is the subsystem for the roller mechanism.
5.1.2.1 Package, Imports, Class Declaration, Member Variables, and Constructor

The first sections of this subsystem are very similar to the Drive subsystem. See that section for more
detailed description of each of these parts of the code. For the launcher, the two single motors are
created and controlled independently, no follower or drivetrain object is used.
5.1.2.2 SmartDashboard

The constructor for this subsystem has an extra section which puts a number of the fuel system
constants onto the dashboard. This allows for tuning these values easily while testing with the robot.
The “SmartDashboard” class is an easy way to access the “NetworkTables” protocol which is like a
shared dictionary between the robot program, dashboard, and any other clients (like vision
coprocessors”. Values are referenced using “keys” and we can use these same keys later to get the
latest copy of each value. For more information about tuning the robot using these values, see Tuning
Robot Values.
5.1.2.3 Methods – Hardware Control

The remainder of the subsystem class is hardware access methods. Here we define any methods that
commands may need to call to get status from or perform actions on the subsystem. For our fuel
system this includes methods to set the speed of each motor and a method to stop both motors.

Rev. Dec. 23, 2025 12 of 27

In the InlineCommands version of the project this method will look a little different, for more detail see
the Inline Commands section.

5.2 Commands
Commands are what tell the robot when to run the different components that are defined in their
subsystems. Commands are “scheduled” for execution, performed, and then removed from the
command scheduler. Each command has 4 distinct parts that are performed throughout its lifecycle:

- Initialize: performed when the command is initially scheduled. Anything put in the initialize
section of a command will run right before the main body of the command.

- Execute: the main body of the command, which runs once every loop cycle (~20 ms)
- End: performed when the command is removed from the scheduler which will occur when the

command indicates it’s finished or if it’s interrupted by a new command requiring one of the
same subsystems.

- isFinished: called once per loop cycle after the execute method. isFinished returns true when
the condition for exiting the command is met. When isFinished returns true, the end method is
called.

As we discussed in section 4, the two ways of writing commands that we focus on in this tutorial are
Class commands which subclass the WPILib Command class, and inline commands, which use
command factories and command decorators to create commands. Regardless of the way your team
chooses to make commands, this is the underlying structure that commands follow.

5.3 Class Commands
This subsection will focus on the class command-based framework. Class commands are defined in
their own classes by subclassing the generic WPILib Command. This means that we can directly
override the behavior of the command methods.

Rev. Dec. 23, 2025 13 of 27

5.3.1 DriveCommand
5.3.1.1 Imports and Constructors

The constructor of the command simply stores some parameters into class variables for later use and
declares the subsystem the command requires using “addRequirements”. All commands should have
an “addRequirements” indicating any subsystems they will call methods on that control outputs (i.e.
you may call methods to get values from a subsystem without requiring it but should not set values)

Rev. Dec. 23, 2025 14 of 27

5.3.1.2 Methods – Command State Overrides

In the execute method, we call the ArcadeDrive method from the drive subsystem which tells the
motors to drive such that the robot moves according to the joystick inputs. If you don’t have any code
in a particular command method (such as “initialize” and “end” here) it is permitted to delete them, the
base Command class includes a blank implementation that will be used if your class doesn’t have an
Override.
5.3.2 Eject/Intake/Launch/Spinup

These commands are nearly identical to each other, but set the rollers to different values. This is an
example of how the class approach can be more verbose with more boilerplate. Though you avoid this
by choosing to make a single command class for setting these values and pass the values to be set in
as parameters. The first section of these commands are very similar to the Drive command. See
section Error! Reference source not found.1 for more detailed description of each of the parts of the
code.

Rev. Dec. 23, 2025 15 of 27

5.3.2.1 Imports and Constructor

5.3.2.2 Methods – Command State Overrides

Rev. Dec. 23, 2025 16 of 27

In these commands, the roller values are set in the initialize() method. The values are retrieved from
the SmartDashboard keys (the constants specified are the “default” values if the key couldn’t be found)
to allow for easy tuning. The execute() method is empty because we don’t need to update the roller
values after we’ve set them. The end() method sets the rollers to 0 except for the Spinup command
where we want the rollers to keep running so we can transition directly to launching.
5.3.3 ExampleAuto and Launch Sequence

These commands are both Sequential Command Groups. A Sequential Command Group is a sequence
of commands that execute in order. These commands generally contain a single method in the
constructor called addCommands() where you specify the commands in the group as a comma
separated list. For the LaunchSequence we spin up the launcher for 1 second before running the
launch command. For the ExampleAuto, we drive the robot forward at half-speed for .25 seconds
before launching for 10 seconds.

5.4 Inline Commands
This subsection will focus on the factory command-based framework. Commands are defined using
WPILib inline commands and decorators.
5.4.1 Drive Command Factory

The drive command factory is a method in the Drive subsystem which creates a command.

Rev. Dec. 23, 2025 17 of 27

The “this.run()” notation means we are using the run() helper function from the SubsystemBase class
which turns a Runnable into a command. In this case, we use lambda notation, the () ->, to turn a single
method (the arcadeDrive method of our DifferentialDrive object) into a Runnable. By using the helper
method on the subsystem, it automatically sets up the command to require this subsystem. You can
also see that the parameters passed into the command are a special type called a DoubleSupplier
rather than just a double. This is because this command factory is only called once, when setting up
the command bindings, but we need the speed and rotation values to continually update while the
command is running. Using a DoubleSupplier allows the arcadeDrive function to retrieve new values
each iteration.
5.4.2 Fuel Command Factories

The fuel subsystem also has a couple of command factories that turn methods in the subsystem into
commands.

5.4.3 Autos

The Autos file is an example of a “Static Command Factory”. Your program should never create an
Autos object (as shown by the constructor simply printing an error message), instead you call class
methods statically using Autos.exampleAuto() type syntax. This structure is one of the ways to define
complex groups that involve multiple subsystems.

Rev. Dec. 23, 2025 18 of 27

Our example file only has a single autonomous routine to get. You could easily extend this pattern by
adding additional methods to define more autonomous routines and you could select between them
using a SendableChooser on the dashboard.

This simple autonomous routine instructs the robot to drive forwards for 0.25 seconds at 50% power
by using the WithTimeout decorator to set a timeout of 0.25 seconds on the driving command. The
different types of command compositions that are built-in via decorators and factory methods are
described on the Command Compositions page. It then stops driving, spins up for 1 second, launches
for 9 seconds, then stops the fuel rollers.

5.5 Constants
This class contains named constants used elsewhere in the code. Subclasses are used to organize the
constants into distinct groups, in this case by subsystem. The provided constant names should pretty
clearly describe what each is for.

5.6 Robot
This file is identical to the default Command-Based template. You can find a description of the
elements in the Robot class in the Structuring a Command-Based Robot Project article.

5.7 RobotContainer
The RobotContainer class is where instances of the robot subsystems and controllers are declared and
where default commands and mappings of buttons to commands are defined.
5.7.1 Imports

The first section of code is the imports. In this case we need to import the “SendableChooser” for
selecting auto modes, some elements from the commands module, some sections of the constants file
from our project, and then all of our commands and subsystems.

Rev. Dec. 23, 2025 19 of 27

5.7.2 Class definition and Constructor

The first section of the class sets up some member variables in the class. For RobotContainer this
generally includes all of your subsystems and control devices. This code uses the
CommandXboxController class to represent the gamepads as it contains a number of helper methods
that make it much easier to connect commands to buttons.

Next is the constructor which contains a call to configureBindings() which we will cover below. This
method is used to set up button bindings and default commands. You could put all this code directly in
the constructor, but as your robot and controls become more complex, it’s often helpful to split things
up for clarity.

The other thing the constructor does is add the one autonomous mode to the dashboard chooser.
Additional autonomous mode options can be added to this chooser using the adoption() method and
then you could select which one to run from SmartDashboard, Shuffleboard, Elastic or other 3rd party
dashboards.
5.7.3 configureBindings()

This method sets up the relationships between our controls and commands. In this section all
examples are shown with the inline project as the bindings for that project are a bit more complex. The
bindings in the class project are in the same order.

Rev. Dec. 23, 2025 20 of 27

The first section sets up a binding for the ‘LeftBumper’ button on the operator controller to intake fuel.
The CommandXboxController class contains methods for each button which return “Trigger” objects.
These “Trigger” objects then have further methods that narrow down the behavior we want to control
the command such as toggles, initiating on change, or running only while the Trigger is true or false. In
this instance we use “whileTrue()” to have our command run while the button is being held and stop
when it is released. For the inline project, the command to run is created inline using the runEnd()
method from the subsystem. As noted earlier, using the subsystem built-in factories makes sure the
commands already require that subsystem. The runEnd() factory takes two Runnables, one to run
continuously while the command is running and one to run when the command ends. In order to turn
the methods we want to execute into Runnables, we need to use a lambda function.

Next is the binding for the ‘RightBumper’ button to launch fuel. In the class project, this binding looks
pretty similar, with the additional logic tucked away in the command classes. In the inline project, we
need to build up in the additional logic in the binding using command decorators (or compositions).
We start with the first command we want to run when the button is pressed, spinUpCommand(). Then
we use the withTimeout decorator to end that command after a certain amount of time. We modify the
result with the andThen() decorator to specify that after the spinUpCommand ends we want to run the
launchCommand(). Lastly, we use the finallyDo() decorator to specify a Runnable to run no matter what
when the command ends (such as when the button is let go) to stop the fuel rollers.

The provided code also sets default commands in the configureBindings method. The choice of where
to do this is personal preference. As your robot and controls get more complex, you may prefer to put
the default command mapping in the constructor or even split it into it’s own method called from the
constructor.

Next, we set up the default command for the drivetrain. We want a command to run on our drivetrain
to allow us to drive the robot with joysticks whenever we don’t have some other command using the
drivetrain (like the exampleAuto command). To do this we use the setDefaultCommand() method of
the subsystem. This sets the command that will run whenever the Scheduler sees nothing else running
on that subsystem.

For the forward/back movement we pass in the value from the Y-axis (vertical) of the left stick of the
controller, but we negate it. This is because joysticks generally define pushing the stick away from you

Rev. Dec. 23, 2025 21 of 27

as negative and pulling the stick towards you as positive (a result of the original use being flight
simulators). We want pushing the stick away from us to drive the robot forward so we negate the
value. Similar for the turning value where we negate the X-axis (horizontal) of the right stick of the
controller. The joystick considers pushing this to the right as a positive value, but the WPILib classes
consider clockwise rotation (what would be expected when pushing the joystick right) as negative.

6 Both values are scaled down by different factors to
make the robot more controllable. As your drivers
get more comfortable, you can experiment with
increasing these constants, or try some of the
alternative options covered in the Tuning Robot
Values

As mentioned in the code walkthrough, many of the constants for the fuel subsystem have default
values written to Network Tables and then read the value from there during execution. This allows you
to easily tweak the value currently being used by the robot to try to tune robot behavior.

To access these values, open the Driver Station, then use the Dashboard Type dropdown on the
Settings (gear) tab to select SmartDashboard, Shuffleboard, or Elastic (these are all installed by the
WPILib installer). SmartDashboard and Shuffleboard are a little easier to use immediately as the values
will appear automatically, but both are expected to be removed in future seasons due to lack of
maintainers. To see the values in Elastic, click the Add Widget button at the top of the screen, expand
the SmartDashboard section, then click and drag each value out onto the main display.

Rev. Dec. 23, 2025 22 of 27

There are 5 constants used by the fuel system that are published to the dashboard, all of which are
values in volts provided to the specified roller:

- Intaking intake roller value: Corresponds to the speed of the intake roller when intaking. A
larger value spins the roller faster which will intake the fuel more rapidly, but may increase the
chance of the fuel ‘popcorning’ directly up and out of the launcher.

- Intaking feeder roller value: Corresponds to the speed of the feeder roller when intaking. The
value is negative so that the feeder spins the opposite way from when the robot is launching. In
our testing the minimum value of -12V worked best but you may wish to test on your own,
especially if you are modifying the intake roller value.

- Launching feeder roller value: Corresponds to the speed of the feeder roller during launching. A
larger value will feed fuel closer together and impart more speed before reaching the launcher,
but may not give the launcher enough time to get back up to speed. If you are seeing
inconsistent distance when launching multiple fuel, you may be feeding too quickly.

- Launching launch roller value: Corresponds to the speed of the launcher wheels during
launching. A larger value will launch the fuel farther, a smaller value will launch the fuel shorter.

- Spin-up feeder roller value: Corresponds to the speed of the feeder roller while the launcher
wheel is spinning up. The feeder runs in reverse during the spin-up to ensure Fuel do not
accidentally enter the launcher. In our testing the exact value was not particularly important,
but you may wish to experiment for yourself to see if it has any effect.

To tune these values while running, simply click the box to select it, type in a new value, then use the
tab key to move out of the box and send the value to the robot (using Enter will disable the robot if it is
enabled). If you find a new value you like, make sure to go to the Constants file and update the default
so the code will use the new value the next time you restart the robot.

Making Changes section below.

The inline project doesn’t need a default command for the fuel rollers as each command binding stops
the rollers when it ends. For the classes project we use a default command to stop the rollers as the
spinUp command doesn’t stop the rollers (so it can transition right into launch) and specifying the
command group in a class file doesn’t provide as simple of a way to specify interrupted behavior like
the finallyDo decorator.

7 Tuning Robot Values

As mentioned in the code walkthrough, many of the constants for the fuel subsystem have default
values written to Network Tables and then read the value from there during execution. This allows you
to easily tweak the value currently being used by the robot to try to tune robot behavior.

To access these values, open the Driver Station, then use the Dashboard Type dropdown on the
Settings (gear) tab to select SmartDashboard, Shuffleboard, or Elastic (these are all installed by the
WPILib installer). SmartDashboard and Shuffleboard are a little easier to use immediately as the values

Rev. Dec. 23, 2025 23 of 27

will appear automatically, but both are expected to be removed in future seasons due to lack of
maintainers. To see the values in Elastic, click the Add Widget button at the top of the screen, expand
the SmartDashboard section, then click and drag each value out onto the main display.

There are 5 constants used by the fuel system that are published to the dashboard, all of which are
values in volts provided to the specified roller:

- Intaking intake roller value: Corresponds to the speed of the intake roller when intaking. A
larger value spins the roller faster which will intake the fuel more rapidly, but may increase the
chance of the fuel ‘popcorning’ directly up and out of the launcher.

- Intaking feeder roller value: Corresponds to the speed of the feeder roller when intaking. The
value is negative so that the feeder spins the opposite way from when the robot is launching. In
our testing the minimum value of -12V worked best but you may wish to test on your own,
especially if you are modifying the intake roller value.

- Launching feeder roller value: Corresponds to the speed of the feeder roller during launching. A
larger value will feed fuel closer together and impart more speed before reaching the launcher,
but may not give the launcher enough time to get back up to speed. If you are seeing
inconsistent distance when launching multiple fuel, you may be feeding too quickly.

- Launching launch roller value: Corresponds to the speed of the launcher wheels during
launching. A larger value will launch the fuel farther, a smaller value will launch the fuel shorter.

- Spin-up feeder roller value: Corresponds to the speed of the feeder roller while the launcher
wheel is spinning up. The feeder runs in reverse during the spin-up to ensure Fuel do not
accidentally enter the launcher. In our testing the exact value was not particularly important,
but you may wish to experiment for yourself to see if it has any effect.

To tune these values while running, simply click the box to select it, type in a new value, then use the
tab key to move out of the box and send the value to the robot (using Enter will disable the robot if it is

Rev. Dec. 23, 2025 24 of 27

enabled). If you find a new value you like, make sure to go to the Constants file and update the default
so the code will use the new value the next time you restart the robot.

8 Making Changes

This section details some common possible changes you may want to make to the KitBot code and
provides some references for how to approach making those changes. Each item is shown with an
example image from one of the two projects, but the same concept should be portable to the other
project type.

8.1 Changing buttons for actions
One of the easiest changes to make to Command-Based robot code is to switch what buttons or
button behaviors control a command. The commands used in the 2026 KitBot do not end (isFinished
always returns false) so they should generally only be used with the whileTrue() behavior, but changing
which buttons they map to can be done very simply.

The button mappings in the example code are done in the configureBindings() method inside the
RobotContainer file. The bindings used for this project are made using the helper methods of the
CommandXboxController class. These helper methods exist for each button on the controller and
return a Trigger object which has further methods that can be used to specify a behavior for the
binding.

As provided the code connects the left bumper button to the intake action. To change this, simply
change the leftBumper() helper method to the method for any of the other buttons! You can see all of
the available options by looking through the CommandXboxController Javadoc for methods which take
no parameter and return a Trigger object.

For example, to change the intake command from the left bumper to the x button, simply replace the
leftBumper() with x()

The lines for the inline command project will look a little different, but the premise is the same.

8.2 Changing Drive Axis Behavior
Another easy change to make is to modify which axes of the controller are used as which part of the
robot driving and how. The provided code does this mapping in two different places depending on the
project:

- For the class project: In the execute() method of the Drive command class

Rev. Dec. 23, 2025 25 of 27

- For the inline project: when setting up the drivetrain default command at the end of the
configureBindings in RobotContainer.

The example code uses the Y-axis of the left stick to drive forward and back and the X-axis of the right
stick to rotate. These can easily be swapped to the opposite sticks, or move just one so they are on the
same stick! To review the available options, look for methods that return a float in the XboxController
API Doc. To make this type of modification, locate the method call you wish to change, such as
getLeftY(), and replace it with the new desired method, such as getRightY()

Example: changing the forward-back driving to the right stick Y-axis and leaving the rotation on the
right X-axis in the inline project

You can also modify the axis values. One common modification is to cube the values. This preserves
the sign of the value (positive stays postive, negative stays negative) and the maximum value (doesn’t
reduce the max speed of the robot) while providing less sensitivity at low inputs, potentially allowing
for more precise control at low speeds. To make this type of modification, you can apply the
modification to the axis where it’s being captured. The Arcade Drive method from the Differential Drive
class already squares the inputs by default (while preserving sign), you likely want to disable this if you
are cubing them yourself by passing an additional parameter to the Arcade Drive method call in the
drivetrain subsystem.

Example: changing both axes to be cubed in the classes project

Another common modification is to scale the values down by default, but allow for the maximum value
if a button is pressed (turbo mode). This type of modification can also be done at the point of capture,
though as complexity grows, you may wish to shift from an inline command definition to a different
type where you can define the command behavior more clearly.

Example: Scale the forward-back driving by 50% unless the right bumper is pressed in the inline project

Rev. Dec. 23, 2025 26 of 27

This example uses a shorthand if-else construction called the ternary operator. This operator allows us
to write a simple “if” statement in a very compact way; if the right bumper is pressed, we pass the full
value, if not we multiply it by .5. The code also uses a method called “getHID()” on the
CommandXboxController; this method gives use the underlying XboxController object which we use to
get the direct Boolean value of the button instead of the Trigger objects that come from the
CommandXboxController class.

8.3 Changing Drive Type
The last likely change we will cover is changing from Arcade Drive to Tank Drive. Unlike Arcade drive
which maps one axis to rotation and one to forward/back, Tank drive maps one axis (generally the Y-
axis) to each side of a differential drivetrain. For some drivers this control is more natural, especially for
precisely controlling how the robot moves when driving arcs. To make this change, you’ll have to reach
beyond RobotContainer as the provided drivetrain subsystems don’t expose a tank drive method or
command. In the drivetrain subsystem make a new method (for classes) or command factory (for
inline) called tankDrive(). This method should look a lot like the arcadeDrive method. Then, modify the
default command mapping in RobotContainer (for inline) or the Drive command (for classes) to use
this new method with the appropriate joystick axis (note that this is likely different axes than arcade).

Example: changing to tank drive in the class project by creating a method in the subsystem and
modifying the Drive command

8.4 Developing Autonomous Routines
The provided code contains a simple autonomous mode that drives forward at ½ power for 0.25
seconds to space the robot away from the Hub, then launches for 10 seconds to attempt to launch the
preloaded Fuel. Additional autonomous modes can be developed, either by adding additional methods
in the Autos file (see the Hatchbot Inlined example project for an example of this style with more
complex autonomous) or by creating separate files for each autonomous routine (see the Hatchbot
Traditional for an example of this approach).

Rev. Dec. 23, 2025 27 of 27

It's common (but definitely not required!) to have multiple autonomous routines that you may wish to
run based on different starting locations or strategies. If you pursue this, the most common way to
choose between them for each match is to select between them using a SendableChooser on the
dashboard. These projects already include the SendableChooser with the single option, ready for you
to extend with more choices.

