CONTENTS

1 Introduction .. 5
 1.1 About FIRST® .. 5
 1.2 In Memoriam .. 5
 1.3 FIRST® Robotics Competition .. 5
 1.4 Gracious Professionalism®, a FIRST® Philosophy ... 6
 1.5 Coopertition® ... 7
 1.6 This Document & Its Conventions .. 8
 1.7 Translations & Other Versions .. 10
 1.8 Team Updates .. 10
 1.9 Question and Answer System Sponsored by Autodesk® 10

2 Game Overview .. 13

3 ARENA ... 15
 3.1 FIELD .. 15
 3.2 Zones and Markings ... 17
 3.3 SHIELD GENERATOR ... 19
 3.3.1 SHIELD GENERATOR Structure ... 20
 3.3.2 GENERATOR SWITCH .. 20
 3.3.3 BOUNDARIES .. 22
 3.3.4 SHIELD GENERATOR Lighting ... 23
 3.4 ALLIANCE STATION ... 24
 3.4.1 ALLIANCE WALL .. 24
 3.5 TRENCH ... 30
 3.5.1 CONTROL PANEL .. 31
 3.6 POWER CELL .. 34
 3.7 Vision Targets .. 34
 3.8 The FIELD Management System .. 35

4 MATCH Play .. 37
 4.1 Setup ... 37
 4.1.1 POWER CELLS ... 37
 4.1.2 ROBOTS ... 39
 4.1.3 Humans ... 39
4.2 Autonomous Period ... 39
4.3 Teleoperated Period ... 39
4.4 Scoring .. 39
 4.4.1 POWER PORT Scoring .. 39
 4.4.2 SHIELD GENERATOR Scoring .. 40
 4.4.3 CONTROL PANEL Scoring .. 41
 4.4.4 GENERATOR SWITCH Scoring .. 41
 4.4.5 Point Values ... 42
4.5 Rule Violations ... 43
 4.5.1 Violation Details ... 43
4.6 DRIVE TEAM ... 44
4.7 Other Logistics ... 45
5 Safety Rules ... 47
6 Conduct Rules ... 49
7 Game Rules: ROBOTS ... 55
 7.1 Before/After the MATCH ... 55
 7.2 During the MATCH ... 55
 7.2.1 During AUTO Only .. 55
 7.2.2 POWER CELL Interaction .. 56
 7.2.3 Zone Specific Restrictions .. 57
 7.2.4 ROBOT Restrictions ... 60
 7.2.5 ROBOT to ROBOT Interaction .. 61
 7.2.6 FIELD Interaction .. 63
8 Game Rules: Humans ... 65
 8.1 Before the MATCH ... 65
 8.2 During the MATCH ... 66
 8.3 In the ARENA ... 67
9 ROBOT Construction Rules ... 69
 9.1 Overview ... 69
 9.2 General ROBOT Design ... 71
 9.3 ROBOT Safety & Damage Prevention 73
 9.4 Budget Constraints & Fabrication Schedule 74
11 Tournaments ... 107
 11.1 MATCH Schedules .. 107
 11.2 REFEREE Interaction ... 107
 11.2.1 YELLOW and RED CARDS ... 108
 11.3 MATCH Replays ... 109
 11.4 Measurement ... 110
 11.5 Practice MATCHES .. 110
 11.6 Qualification MATCHES .. 110
 11.6.1 Schedule .. 110
 11.6.2 MATCH Assignment ... 110
 11.6.3 Qualification Ranking ... 111
 11.7 Playoff MATCHES ... 111
 11.7.1 ALLIANCE Selection Process ... 112
 11.7.2 Playoff MATCH Bracket ... 113
 11.7.3 Pit Crews ... 114
 11.7.4 TIMEOUTS .. 114
 11.7.5 BACKUP TEAMS .. 114
 11.8 TIMEOUTS ... 115
 11.8.1 TIMEOUTS in Playoff MATCHES .. 116
 11.9 Advancement Through the District Model ... 117
 11.10 Advancement to the FIRST® Championship .. 117
 11.11 FIRST® Championship: Additions and Exceptions ... 117

12 Glossary ... 119
1 INTRODUCTION

1.1 About FIRST®

FIRST® (For Inspiration and Recognition of Science and Technology) was founded by inventor Dean Kamen to inspire young people’s interest in science and technology. As a robotics community that prepares young people for the future, FIRST is the world’s leading youth-serving nonprofit advancing STEM education. For 30 years, FIRST has combined the rigor of STEM learning with the fun and excitement of traditional sports and the inspiration that comes from community through programs that have a proven impact on learning, interest, and skill-building inside and outside of the classroom.

FIRST provides programs that span a variety of age groups:

- FIRST® Robotics Competition for grades 9-12, ages 14-18
- FIRST® Tech Challenge for grades 7-12, ages 12-18
- FIRST® LEGO® League for grades Pre-K-8, ages 4-16
 - FIRST® LEGO® League Challenge for grades 4-8 (ages 9-16*)
 - FIRST® LEGO® League Explore for grades 2-4 (ages 6-10)
 - FIRST® LEGO® League Discover for grades Pre-K-1 (ages 4-6)

*Ages and grades vary by country

Please visit our website: www.firstinspires.org for more information about FIRST and its programs.

1.2 In Memoriam

In October 2019, Dr. Woodie Flowers, an innovator in design and engineering education and the Distinguished Advisor to FIRST and supporter of our mission, passed away. As thousands of heartfelt tributes to Woodie have poured in from around the world, it is clear his legacy will live on indefinitely through the gracious nature of our community and our ongoing commitment to empowering educators and building global citizens.

![Figure 1-1 Dr. Woodie Flowers, 1943-2019](image_url)

1.3 FIRST® Robotics Competition

FIRST® Robotics Competition combines the excitement of sport with the rigors of science and technology. Teams of students are challenged to design, build, and program industrial-size robots and compete for awards, while they also create a team identity, raise funds, hone teamwork skills, and advance respect and appreciation for STEM within the local community.
2021 FIRST® Robotics Competition

Volunteer professional mentors lend their time and talents to guide each team. It’s as close to real-world engineering as a student can get. Plus, high school students gain access to exclusive scholarship opportunities from colleges, universities, and technical programs.

Prior to the 2021 season, a new, challenging game was introduced each January at an event known as “Kickoff.” Due to the 2020 season being disrupted by the COVID-19 pandemic, the 2021 Kickoff presented a modified version of the 2020 game, INFINITE RECHARGE℠. Each exciting competition combines the practical application of science and technology with the fun, intense energy and excitement of a championship-style sporting event. Teams are encouraged to display Gracious Professionalism®, help other teams, and cooperate while competing. This is known as Coopetition®.

The 2021 season includes a series of three new challenges in which teams can engage from “home” and virtually compete with teams from around the world.

1. **INFINITE RECHARGE at Home** invites teams to engage in two ways: compete for judged awards using their 2020/2021 robot and compete in a Skills Competition, a series of challenges for teams who have access to their robot.

2. **The Game Design Challenge** invites teams to design a FIRST Robotics Competition game and compete for judged awards and an opportunity to share their design with FIRST Robotics Competition game designers.

3. **The FIRST Innovation Challenge presented by Qualcomm** invites teams to identify a real-world global issue and develop an innovative solution.

This manual and details about the At Home Challenges were presented at the 2021 FIRST Robotics Competition Kickoff on Saturday, January 9, 2021.

At the 2020 Kickoff, teams:

- saw the 2020 game, INFINITE RECHARGE, for the first time
- learned about the 2020 game rules and regulations
- received a Kickoff Kit that provided a starting point for robot build

At the 2021 Kickoff, all teams:

- learned details about the 2021 At Home Challenges, for the first time
- were provided resources for the 2021 game, which is a modified version of the 2020 game, INFINITE RECHARGE
- gained access to the FIRST Choice component of the 2021 Kit of Parts

1.4 Gracious Professionalism®, a FIRST® Philosophy

Gracious Professionalism® is part of the ethos of *FIRST*. It’s a way of doing things that encourages high quality work, emphasizes the value of others, and respects individuals and the community.

Gracious Professionalism is not clearly defined for a reason. It can and should mean different things to everyone.

Some possible meanings of *Gracious Professionalism* include:

- Gracious attitudes and behaviors are win-win.
- Gracious folks respect others and let that respect show in their actions.
- Professionals possess special knowledge and are trusted by society to use that knowledge responsibly.
- Gracious Professionals make a valued contribution in a manner pleasing to others and to themselves.
In the context of FIRST, this means that all teams and participants should:

- Learn to be strong competitors, but also treat one another with respect and kindness in the process.
- Avoid leaving anyone feeling as if they are excluded or unappreciated.

Knowledge, pride and empathy should be comfortably and genuinely blended.

In the end, Gracious Professionalism is part of pursuing a meaningful life. When professionals use knowledge in a gracious manner and individuals act with integrity and sensitivity, everyone wins and society benefits.

The FIRST spirit encourages doing high-quality, well-informed work in a manner that leaves everyone feeling valued. Gracious Professionalism seems to be a good descriptor for part of the ethos of FIRST. It is part of what makes FIRST different and wonderful.

- Dr. Woodie Flowers, (1943 – 2019)
 Distinguished Advisor to FIRST

It is a good idea to spend time going over this concept with your team and reinforcing it regularly. We recommend providing your team with real-life examples of Gracious Professionalism in practice, such as when a team loans valuable materials or expertise to another team that they will later face as an opponent in competition. Routinely highlight opportunities to display Gracious Professionalism at events and encourage team members to suggest ways in which they can demonstrate this quality themselves and through outreach activities.

1.5 Coopertition®

At FIRST, Coopertition® is displaying unqualified kindness and respect in the face of fierce competition. Coopertition is founded on the concept and philosophy that teams can and should help and cooperate with one another even as they compete. Coopertition involves learning from teammates and mentors. Coopertition means competing always but assisting and enabling others when you can.
A Message from Woodie Flowers Award Recipients

The Woodie Flowers Award is the most prestigious mentoring award in FIRST. The prior award recipients created an important message for all FIRST Robotics Competition teams as we approach the challenges for the 2021 season.

Performing at your best is important. Winning is important. This is a competition.

However, winning the right way and being proud of what you have accomplished and how you have accomplished it is more important. FIRST could create rules and penalties to cover almost any scenario or situation, but we prefer an understandable challenge with simpler rules that allow us to think and be creative in our designs and solutions.

We want to know that everyone is playing at their best in every challenge. We want to know they are playing with integrity and not using strategies based on questionable behaviors.

As your team prepares for the challenges of the 2021 season, implements your ideas and solutions, execute your strategies, and live your daily lives, remember what Woodie said time and time again, and let’s ‘Make your Grandmother proud.’

Woodie Flowers
Liz Calef (88)
Mike Bastoni (23)
Ken Patton (51, 65)
Kyle Hughes (27)
Bill Beatty (71)
Dave Verbrugge (5110, 67)
Andy Baker (3940, 45)
Dave Kelso (131)

Paul Copioli (3310, 217)
Rob Mainieri (812, 64, 498, 2735, 6833)
Dan Green (111)
Mark Breadner (188)
John Novak (16, 323)
Chris Fultz (234)
John Larock (365)
Earl Scime (2614)

Fredi Lajvardi (842)
Lane Matheson (932)
Mark Lawrence (1816)
Eric Stokely (258, 360, 2557, 5295)
Glenn Lee (359)
Gail Drake (1885)
Allen Gregory (3847)
Lucien Junkin (118)

1.6 This Document & Its Conventions

The 2021 INFINITE RECHARGE Game Manual is a resource for all FIRST Robotics Competition teams for information specific to the 2021 INFINITE RECHARGE game. Its audience will find the following detail:
2021 FIRST® Robotics Competition

- a general overview of the INFINITE RECHARGE game
- detail about the INFINITE RECHARGE playing field
- description of how to play the INFINITE RECHARGE game
- all season rules (e.g. safety, conduct, game play, inspection, etc.)
- description of how teams advance at 2021 tournaments and throughout the season (pending approval of in-person events)

All participants should also study the Event Rules Manual as it details event rules and expectations that perpetuate from season to season. That content complements, and carries the same weight as, this document.

The intent of this manual is that the text means exactly, and only, what it says. Please avoid interpreting the text based on assumptions about intent, implementation of past rules, or how a situation might be in “real life.” There are no hidden requirements or restrictions. If you’ve read everything, you know everything.

Specific methods are used throughout this section to highlight warnings, cautions, key words and phrases. These conventions are used to alert the reader to important information and are intended help teams in constructing a robot that complies with the rules in a safe manner.

Links to other section headings in this manual and external articles appear in blue underlined text.

Key words that have a particular meaning within the context of the FIRST Robotics Competition and INFINITE RECHARGE are defined in the Glossary section and indicated in ALL CAPS throughout this document.

The rule numbering scheme uses an indication of the section in which the rule is stated plus a serial numbering system (e.g. safety rules begin with “S,” game rules begin with “G,” etc.). References to specific rules use this scheme (e.g. “S1” is the Safety Rules section).

Warnings, cautions and notes appear in blue boxes. Pay close attention to their contents as they’re intended to provide insight into the reasoning behind a rule, helpful information on understanding or interpreting a rule, and/or possible “best practices” for use when implementing systems affected by a rule.

While blue boxes are part of the manual, they do not carry the weight of the actual rule (if there is an inadvertent conflict between a rule and its blue box, the rule supersedes the language in the blue box).

Imperial dimensions are followed by comparable metric dimensions in parentheses to provide metric users with the approximate size, weight, etc. Metric conversions for non-rules (e.g. FIELD dimensions) round to the nearest whole unit, e.g. “17 in. (~43 cm)” and “6 ft. 4 in. (~193 cm).” Metric conversions in rules round such that the metric dimension is compliant with the rule (i.e. maximums round down, minimums round up). The metric conversions are offered for convenient reference only and do not overrule or take the place of the imperial dimensions presented in this manual and the field drawings (i.e. field dimensions and rules will always defer to measurements using imperial units).

Some sections and rules include colloquial language, also called headlines, in an effort to convey an abbreviated intent of the rule or rule set. This language is differentiated using bold blue text. Any disagreement between the specific language used in the rules and the colloquial language is an error, and the specific rule language is the ultimate authority. If you discover a disparity, please let us know and we will correct it.
Team resources that aren’t generally season specific (e.g. what to expect at an event, communication resources, team organization recommendations, robot transportation procedures, and award descriptions) can be found on the FIRST Robotics Competition website.

1.7 Translations & Other Versions

The INFINITE RECHARGE Game Manual and the At Home Challenge Manual are originally and officially written in English and are occasionally translated into other languages for the benefit of FIRST Robotics Competition teams whose native language is not English.

Text-based English versions can be provided only for use with assistive devices for visually and hearing-impaired persons, and not for redistribution. For more information, please contact frcteamadvocate@firstinspires.org.

In the event that a rule or description is modified in alternate versions of these manuals, the English pdf versions as published on the FIRST Game and Season Materials webpage are the commanding versions.

1.8 Team Updates

Team Updates are used to notify the FIRST Robotics Competition community of revisions to the official season documentation (e.g. the manuals, drawings, etc.) or important season news. Between Kickoff and February 2, 2021, Team Updates are posted each Tuesday and Friday. Additional Team Updates and their posting frequency will be announced if an in-person season is approved. Team Updates are posted on the Season Materials web page and are generally posted before 5 pm, Eastern. Users 18 years old and older may request email alerts to be notified when Team Updates are posting using this form.

Generally, Team Updates follow the following convention:

- Additions are highlighted in yellow. This is an example.
- Deletions are indicated with a strikethrough. This is an example.
- Notes that are added for clarity or explanation for the change but are not retained as part of the manual appear in bold. This is an example.

1.9 Question and Answer System Sponsored by Autodesk®

The Q&A sponsored by Autodesk® is a resource for clarifying 2021 INFINITE RECHARGE Game Manual, 2021 At Home Challenge Manual, Awards web page, Self-Inspection Checklist, official FIELD drawings, and/or FIRST Robotics Competition Event Experience web page content. For questions about other materials (e.g. Game Design Activities), please inquire using the 2021 Season Supplemental Resources section of the FIRST Forums. Teams can search for previously asked questions and responses or pose new questions. Questions can include examples for clarity or reference multiple rules to understand the relationships and differences between them.

The Q&A opens on January 13, 2021, 12:00 PM Eastern. Details on the Q&A can be found on the Game and Season Materials web page. The Q&A may result in revisions to the text in the official Manuals (which are communicated using are the commanding versions).

Team Updates).

The responses in the Q&A do not supersede the text in the manuals, although every effort will be made to eliminate inconsistencies between them. While responses provided in the Q&A may be used to aid discussion at each event, per Inspection & Eligibility Rules and REFEREE Interaction sections,
2021 FIRST® Robotics Competition

REFEREES and Inspectors are the ultimate authority on rules. If you have concerns about enforcement trends by volunteer authorities, please notify FIRST at firstroboticscompetition@firstinspires.org.

The Q&A is not a resource for firm predictions on how a situation will play out an event. Questions about the following will not be addressed:

- rulings on vague situations,
- challenging decisions made at past events, or
- design reviews of a robot system for legality.

Weak questions are overly broad, vague, and/or omit rule references. Examples of questions that will not be answered in the Q&A include:

- Is this part/design legal?
- How should the REFEREE have ruled when this specific game play happened?
- Duplicate questions
- Nonsense questions

Good questions ask generically about features of parts or designs, gameplay scenarios, or rules, and often reference one or more relevant rules within the question. Some examples of questions that will likely be answered in the Q&A are:

- A device we are considering using on the ROBOT comes with purple AWG 40 wire, does this comply with R?? and R??
- We’re not sure how to interpret how Rule G?? applies if Blue ROBOT A does X and Red ROBOT B does Y, can you please clarify?
- If a robot does this specific action, is it doing what this defined term is describing?

Questions from "FRC 99999" represent content asked by key volunteers (e.g. Referees, Inspectors, etc.), answered by FIRST headquarters, and are considered relevant to teams.
In INFINITE RECHARGE℠, two Alliances work to protect FIRST City from approaching asteroids caused by a distant space skirmish. Each Alliance, along with their trusty droids, race to collect and score Power Cells in order to energize their Shield Generator for maximum protection. To activate Stages of the Shield Generator, droids manipulate their Control Panels after scoring a specific number of Power Cells. Near the end of the match, droids race to their Rendezvous Point to get their Shield Generator operational in order to protect the city!

During the 15 second Autonomous Period, droids follow pre-programmed instructions. Alliances score points by:
1. Scoring Power Cells in the Power Port
2. Moving from the Initiation Line

In the final 2 minutes and 15 seconds of the match, drivers take control of the droids. Alliances score points by:
1. Continue to score Power Cells in the Power Port
2. Completing Rotation Control
3. Completing Position Control
4. Hanging from the Generator Switch
5. Getting the Generator Switch to the level position

The Alliance with the highest score at the end of the match wins.
3 ARENA

The ARENA includes all elements of the game infrastructure that are required to play INFINITE RECHARGE®: the FIELD, POWER CELLS, and all equipment needed for FIELD control, ROBOT control, and scorekeeping.

The ARENA is modular and assembled, used, disassembled, and shipped many times during the competition season. It will undergo wear and tear. The ARENA is designed to withstand rigorous play and frequent shipping. Every effort is made to ensure that ARENAS are consistent from event to event. However, ARENAS are assembled in different venues by different event staff and some small variations occur. For details regarding assembly tolerances, please refer to the 2021 ARENA Layout and Marking Diagram. Successful teams will design ROBOTS that are insensitive to these variations.

Illustrations included in this section are for a general visual understanding of the INFINITE RECHARGE ARENA, and dimensions included in the manual are nominal. Please refer to the official drawings for exact dimensions, tolerances, and construction details. The official drawings, CAD models, and drawings for low-cost versions of important elements of the INFINITE RECHARGE FIELD are posted on the 2021 INFINITE RECHARGE Playing Field Page on the FIRST website.

3.1 FIELD

Each FIELD for INFINITE RECHARGE is 26 ft. 11¼ in. (~821 cm) by 52 ft. 5¼ in. (~1598 cm) carpeted area bound by and including the inward- and upward-facing surfaces of the guardrails and inward-facing surfaces of the ALLIANCE WALLS (except Chute surfaces and any surface beyond the face of the POWER PORT). It is populated with a SHIELD GENERATOR, TRENCHES, LOADING BAYS, and POWER PORTS.

The SHIELD GENERATOR is located in the center of the FIELD. The SHIELD GENERATOR consists of the structure, the GENERATOR SWITCHES, the BOUNDARIES, and the RENDEZVOUS POINTS.
One (1) Red TRENCH and one (1) Blue TRENCH are located along the guardrail, each spanning the gap between a vertical leg of the SHIELD GENERATOR and the guardrail. Each TRENCH contains a CONTROL PANEL.

One (1) Red POWER PORT and one (1) Blue POWER PORT are located in the ALLIANCE WALLS. The Red POWER PORT is part of the Blue ALLIANCE WALL, and the Blue POWER PORT is part of the Red ALLIANCE WALL.

One (1) Red LOADING BAY and one (1) Blue LOADING BAY are located in their respective ALLIANCE WALLS.

The surface of the FIELD is low pile carpet, Shaw Floors, Philadelphia Commercial, Neyland II 20, “66561 Medallion” (please note that Neyland II carpet is not available for team purchase and the closest equivalent is Neyland III). The edge of the carpet is secured to the venue floor using 3M™ Premium Matte Cloth (Gaffers) Tape (GT2) or comparable gaffers tape.

Guards form the long edges of the FIELD and are a 1 ft. 7 in. (~48 cm) tall system of transparent polycarbonate supported on the top and bottom by aluminum extrusion. Guards, along with the ALLIANCE WALLS, prevent ROBOTS from inadvertently exiting the FIELD during a MATCH. There are four (4) gates in the guardrail that allow access to the FIELD for placement and removal of ROBOTS. The gate passthrough, when open, is 3 ft. 2 in. (~97 cm) wide. Gates are closed and shielded during the MATCH.

![Gate locations](Image)

Figure 3-2 Gate locations

There are two versions of guards and PLAYER STATIONS used for competitions. One design matches the 2021 Official FIRST FIELD Drawings & Models. The other is designed and sold by AndyMark. While the designs are slightly different, the critical dimensions, performance, and expected user experience between the two are the same. Detailed drawings for the AndyMark design are posted on the AndyMark website. All illustrations in this manual show the traditional FIELD design.
3.2 Zones and Markings

FIELD Zones and markings of consequence are described below. Unless otherwise specified, the tape used to mark lines and zones throughout the FIELD is 2-in. (~5 cm) 3M™ Premium Matte Cloth (Gaffers) Tape (GT2) or comparable gaffers tape.

Figure 3-3 INFINITE RECHARGE FIELD

ALLIANCE STATION: a 30-ft. (~914 cm) wide by 10 ft. 9¼ in. (~328 cm) to 12 ft. 10¾ in. (~393 cm) deep infinitely tall volume formed by, and including the ALLIANCE WALL, the edge of the carpet, and ALLIANCE colored tape.

INITIATION LINE: a white tape line spanning the width of the FIELD and located 10 ft. (~305 cm) from the face of PLAYER STATION 2 to the near edge of the tape. An ALLIANCE’S INITIATION LINE is located in the opponent’s SECTOR.

LOADING ZONE: a 5 ft. (~152 cm) wide, 2 ft. 6 in. (~76 cm) deep infinitely tall volume with a triangular base bounded by the LOADING BAY and ALLIANCE colored tape. The LOADING ZONE includes the ALLIANCE colored tape.
RENDEZVOUS POINT: a 6 ft. 9¾ in. (~208 cm) wide, 12 ft. 6¾ in. (~383 cm) deep, infinitely tall volume formed by ALLIANCE colored BOUNDARIES, ALLIANCE colored tape, and the black BOUNDARY pair that divides the Red and the Blue BOUNDARIES. The RENDEZVOUS POINT includes the ALLIANCE colored BOUNDARIES and ALLIANCE colored tape.

Figure 3-4 Red RENDEZVOUS POINT

SECTOR: a 26 ft. 11¼ in. (~821 cm) wide by 10 ft. 2 in. (~310 cm) deep infinitely tall volume formed by an ALLIANCE’S ALLIANCE WALL, guardrail, and INITIATION LINE. The SECTOR includes the INITIATION LINE.

STARTING LINE: a white tape line spanning the width of the carpet and located 2 ft. 4 in. (~71 cm) from the back of the PLAYER STATION 2 diamond plate panel to the near edge of the tape.

TARGET ZONE: a 4 ft. (~122 cm) wide, 2 ft. 6 in. (~76 cm) deep infinitely tall volume with a triangular base bounded by the POWER PORT and ALLIANCE colored tape. The TARGET ZONE includes the ALLIANCE colored tape.

TRENCH RUN: a 4 ft. 7 ½ in. (~141 cm) wide, 18 ft. (~549 cm) deep, infinitely tall volume that is bounded by the guardrail, the edge of the TRENCH vertical support closest to the center of the FIELD, and ALLIANCE colored tape. The TRENCH RUN includes the ALLIANCE colored tape.
3.3 SHIELD GENERATOR

The SHIELD GENERATOR is a 14 ft. 1½ in. (~431 cm) wide, 15 ft. ¾ in. (~459 cm) deep, and 9 ft. 6½ in. (~291 cm) tall structure located in the center of the FIELD, oriented at a 22.5 degree angle relative to the guardrails. The SHIELD GENERATOR has one (1) GENERATOR SWITCH per ALLIANCE. Black BOUNDARIES divide the floor of the SHIELD GENERATOR into two sections. Spaces between BOUNDARIES include flooring protection to prevent floor damage. The RENDEZVOUS POINTS...
(including ALLIANCE colored BOUNDARIES, ALLIANCE colored tape, and floor protection) are part of the SHIELD GENERATOR.

3.3.1 SHIELD GENERATOR Structure

The SHIELD GENERATOR structure consists of 1 ft. x 1 ft. (~30 cm x ~30 cm) square truss. The truss structure is 13 ft. 1½ in. (~400 cm) wide, 14 ft. ¾ in. (~429 cm) deep, and 9 ft. 2½ in. (~280 cm) tall. Each of the four vertical truss legs sits on a base. The baseplate extends 6 in. (~15 cm) from each square face and is ¼ in. (~3 mm) thick.

![Figure 3-7 SHIELD GENERATOR structure](image)

3.3.2 GENERATOR SWITCH

Each SHIELD GENERATOR has one (1) GENERATOR SWITCH per ALLIANCE. A GENERATOR SWITCH is a 7 ft. 6 in. (~229 cm) wide, 10 ft. 1½ in. deep (~309 cm), and 4 ft. 6 in. (~137 cm) tall assembly that swings from the top of the SHIELD GENERATOR. Each GENERATOR SWITCH has a HANDLE. The HANDLE is a structure that consists of a RUNG and the supporting structure below the horizontal beam of the GENERATOR SWITCH. A RUNG is a 1¼ in. schedule 40 aluminum pipe (1.66 in. (~4 cm) outer diameter) with two (2) exposed 4 ft. 7¾ in. (~141 cm) long sections. The amount of clearance above the RUNG varies from a minimum of 3½ in. (~9 cm) to a maximum of 12 in. (~30 cm). For safety, foam corner cushions line the lowest edges of the HANDLE. The HANDLE (green and yellow) and RUNG (yellow) are highlighted in Figure 3-8 for clarity.
At the start of the MATCH, the top of the RUNG is parallel to and 5 ft. 3 in. (~160 cm) above the floor protection carpet. The GENERATOR SWITCH can tilt and rest in different positions depending on the number and location of ROBOTS pulling on the HANDLE. For the purposes of scoring (see GENERATOR SWITCH Scoring), LEVEL is evaluated by the magnitude of its tilt as shown in Figure 3-9. The GENERATOR SWITCH is LEVEL if the RUNG is within 8 degrees of horizontal. Hard stops prevent the GENERATOR SWITCH from rotating more than 14.5 degrees in either direction. The rotating portion of the GENERATOR SWITCH has a weight of approximately 93 lbs. (~42 kg) and a center of mass approximately 2 ft. 2 in. (~66 cm) below the center of the shaft from which it is suspended.
ALLIANCE colored stack lights on the SHIELD GENERATOR display information about the status of the ALLIANCE’S GENERATOR SWITCH. See SHIELD GENERATOR Lighting for more information.

3.3.3 BOUNDARIES

BOUNDARIES are 3 in. (~8 cm) wide, 1 in. (~3 cm) tall steel barriers that divide the area inside the SHIELD GENERATOR into two (2) equal sized areas that are 6 ft. 9¾ in. (~208 cm) wide by 12 ft. ¾ in. (~368 cm) deep. BOUNDARIES are secured to the carpet using hook fastener which increases the height to approximately 1¹⁄₁₆ in. (~3 cm). The Red and Blue BOUNDARIES feature 1-in. (~3 cm) diameter holes spaced every 1 ft. 4½ in. (~42 cm). A pair of black BOUNDARIES divide the Red and Blue RENDEZVOUS POINTS. Each truss base has two shorter steel barriers, black with ALLIANCE colored tape, mounted to it. These barriers are ALLIANCE colored BOUNDARIES.

![Figure 3-10 BOUNDARY dimensions](image_url)

A layer of ⅛ in. (~3 mm) thick hardboard is installed on top of the FIELD carpet and covered with another layer of carpet to protect venue flooring. This flooring protection adds approximately ¾ in. (~10 mm) of height to the area between the BOUNDARIES. The floor protection features 1-in. (~3 cm) diameter holes used for staging of POWER CELLS. Holes are placed in a rectangular pattern with 2 ft. 7¾ in. (~81 cm) wide by 1 ft. 8 in. (~51 cm) deep spacing, as shown in Figure 4-2.
3.3.4 SHIELD GENERATOR Lighting

The SHIELD GENERATOR has a set of stack lights for each ALLIANCE which are enabled from the start of the END GAME until five (5) seconds after the MATCH. These lights illuminate when the corresponding GENERATOR SWITCH is LEVEL.

Each half of the SHIELD GENERATOR features three (3) ALLIANCE colored light bars inside of the truss structure.

- The first light bar, inside the vertical truss section adjacent to the ALLIANCE’S TRENCH, turns on once Stage 1 is ACTIVATED.
- The second light bar, inside the vertical truss section closest to the ALLIANCE’S POWER PORT, turns on once Stage 2 is ACTIVATED.
- The third light bar, inside the horizontal truss connecting the two (2) previous truss sections, turns on once Stage 3 is ACTIVATED.
3.4 ALLIANCE STATION

3.4.1 ALLIANCE WALL

The ALLIANCE WALL is the structure that separates ROBOTS from DRIVERS, COACHES, and HUMAN PLAYERS. It consists of three (3) PLAYER STATIONS, the LOADING BAY, and the POWER PORT. ALLIANCE WALLS define the short edges of the FIELD and, along with the guardrails, prevent ROBOTS from exiting the FIELD during the MATCH.

![ALLIANCE WALL Diagram](image)

Figure 3-12 ALLIANCE WALL

3.4.1.1 PLAYER STATION

A PLAYER STATION is one (1) of three (3) assigned positions in an ALLIANCE WALL from where a DRIVE TEAM operates their ROBOT. Each PLAYER STATION is made from a 3 ft. (~91 cm) tall diamond plate base topped with a 3 ft. 6 in. (~107 cm) tall transparent plastic sheet and a top rail. An aluminum shelf is attached to each PLAYER STATION to support an OPERATOR CONSOLE. The shelf is 5 ft. 9 in. (~175 cm) wide and 1 ft. ¼ in. (~31 cm) deep. There is a 4 ft. 6 in. (~137 cm) long by 2 in. (nominal) wide strip of hook-and-loop tape (“loop” side) along the center of the support shelf that may be used to secure the OPERATOR CONSOLE to the shelf. PLAYER STATION 1 and PLAYER STATION 3 intersect the guardrail at a 110 degree angle.

Each PLAYER STATION contains the following components for teams:

A. one (1) Ethernet cable: attaches to the Ethernet port of the OPERATOR CONSOLE and provides connectivity to the Field Management System (FMS)

B. one (1) 120VAC NEMA 5-15R power outlet: located on each PLAYER STATION shelf and protected by its own 2-Amp circuit breaker. It can be used to power the OPERATOR CONSOLE. DRIVE TEAMS are responsible for monitoring their power consumption as a tripped breaker in the outlet does not constitute an ARENA FAULT. For some events in regions that don’t use NEMA 5-15 shaped outlets, event organizers may install appropriate plug adapters to be used throughout the event.
C. one (1) Emergency Stop (E-Stop) button: located on the left side of the PLAYER STATION shelf and is used to deactivate a ROBOT in an emergency.

D. one (1) team sign: displays the team number and is located at the top of each PLAYER STATION.

E. one (1) team LED: indicates ALLIANCE color, ROBOT status, E-Stop status, and is centered at the top of each PLAYER STATION. Team LED states include:

F. Solid: indicates that the ROBOT is connected and enabled. This only happens during a MATCH.

G. Blinking: indicates that either the FMS is preset for the MATCH and the ROBOT is not connected yet, or it’s during a MATCH and the corresponding ROBOT, is BYPASSED, has lost connectivity or the E-stop was pressed.

H. Off: indicates that the ROBOT is linked and DISABLED prior to the start of the MATCH. This light is also off, regardless of ROBOT connection status, after the MATCH has concluded.

I. Amber LED Solid: the PLAYER STATION or FIELD E-stop button has been pressed.

J. one (1) timer (in PLAYER STATION 2): displays the official time remaining in the MATCH and TIMEOUTS. It is marked with white tape along the bottom edge.

- FMS hardware and wiring: mostly located below the PLAYER STATION 2 shelf.

3.4.1.2 LOADING BAY

The LOADING BAY is a 6 ft. 6 in. (~198 cm) tall by 5 ft. (~152 cm) wide structure located between PLAYER STATIONS 2 and 3. HUMAN PLAYERS deliver POWER CELLS through one (1) of the five (5) Chutes in the LOADING BAY.

There are two (2) low Chutes and three (3) high Chutes. Low Chute openings are 3 in. (~8 cm) above the carpet, and high Chute openings are 2 ft. (~61 cm) above the carpet. The high Chutes are adjacent to each other and have a combined width of 2 ft. ¼ in. (~62 cm).

The LOADING BAY also includes two (2) racks for POWER CELL storage. Each rack contains openings for seven (7) POWER CELLS. The racks are 4 ft. 11¾ in. (~152 cm) and 5 ft. 9¾ in. (~177 cm) above the carpet.
3.4.1.3 Power Port

There are two (2) Power Ports on the Field. The Red Power Port is part of the Blue Alliance Wall and the Blue Power Port is part of the Red Alliance Wall. Each Power Port is a 10 ft. 2¼ in. (~310 cm) tall by 4 ft. (~122 cm) wide (excluding backboards) structure and is located between Player Stations 1 and 2. Power Ports process Power Cells scored in its Bottom Port, Outer Port, and Inner Port.

The Bottom Port is a 10 in. (~25 cm) tall, 2 ft. 10 in. (~86 cm) wide rectangle. The bottom edge is 1 ft. 6 in. (~46 cm) above the carpet.

The Outer Port is a regular hexagon that measures 2 ft. 6 in. (~76 cm) in height. The center of the Outer Port is 8 ft. 2¼ in. (~249 cm) above the carpet.

The Inner Port is a 1 ft. 1 in. (~33 cm) diameter circle concentric with and 2 ft. 5¼ in. (~74 cm) behind (i.e. on the Alliance Station side of) the Outer Port. The center is 8 ft. 2¼ in. (~249 cm) above the carpet.
Each POWER PORT releases scored POWER CELLS into its CORRAL, and POWER CELLS are recycled back to the FIELD by HUMAN PLAYERS.

The POWER PORT features two (2) polycarbonate backboards, attached on either side of the OUTER PORT, to help prevent POWER CELLS from leaving the FIELD. Backboards are 6 ft. (~183 cm) wide and extend 3 ft. 8 in. (~112 cm) above the PLAYER STATIONS.
A Phillips Color Kinetics LED light string around the OUTER PORT indicates CAPACITY progress. The string fills from the top center toward the bottom left and right nodes symmetrically, as shown in Figure 3-17. While the node pattern differs depending on the current Stage, as detailed in Table 3-1, the bottom four nodes on either side of the OUTER PORT always fill at a rate of one node per POWER CELL scored. A node map is shown in Figure 3-18.

Table 3-1 Node pattern per CAPACITY

<table>
<thead>
<tr>
<th>CAPACITY</th>
<th>Stage 1 nodes ON</th>
<th>Stage 2 and 3 nodes ON</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>14-17</td>
<td>15-16</td>
</tr>
<tr>
<td>2</td>
<td>11-20</td>
<td>14-17</td>
</tr>
<tr>
<td>3</td>
<td>9-22</td>
<td>13-18</td>
</tr>
<tr>
<td>4</td>
<td>7-24</td>
<td>12-19</td>
</tr>
<tr>
<td>5</td>
<td>5-26</td>
<td>11-20</td>
</tr>
<tr>
<td>6</td>
<td>4-27</td>
<td>10-21</td>
</tr>
<tr>
<td>7</td>
<td>3-28</td>
<td>9-22</td>
</tr>
<tr>
<td>8</td>
<td>2-29</td>
<td>8-23</td>
</tr>
<tr>
<td>9</td>
<td>1-30</td>
<td>7-24</td>
</tr>
<tr>
<td>10</td>
<td>N/A</td>
<td>6-25</td>
</tr>
<tr>
<td>11</td>
<td>N/A</td>
<td>5-26</td>
</tr>
<tr>
<td>12</td>
<td>N/A</td>
<td>4-27</td>
</tr>
<tr>
<td>13</td>
<td>N/A</td>
<td>3-28</td>
</tr>
<tr>
<td>14</td>
<td>N/A</td>
<td>2-29</td>
</tr>
<tr>
<td>15</td>
<td>N/A</td>
<td>1-30</td>
</tr>
</tbody>
</table>
Light strings also indicate other FIELD states as shown in Table 3-2 and Figure 3-19.

Table 3-2 Additional POWER PORT light states

<table>
<thead>
<tr>
<th>Light State</th>
<th>Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>Off</td>
<td>Outside of a MATCH: FIELD is MATCH ready</td>
</tr>
<tr>
<td></td>
<td>In MATCH: current Stage not ACTIVATED</td>
</tr>
<tr>
<td>Green</td>
<td>Head REFEREE has determined FIELD safe for humans</td>
</tr>
<tr>
<td>Green with white</td>
<td>Head REFEREE has determined FIELD is safe for humans, used only during Playoff MATCHES. See TIMEOUTS for more details</td>
</tr>
<tr>
<td>ALLIANCE color with yellow chase pattern</td>
<td>Stage has reached CAPACITY, but not ACTIVATED</td>
</tr>
<tr>
<td>Entire light string is ALLIANCE color</td>
<td>All Stages ACTIVATED</td>
</tr>
</tbody>
</table>

![FIELD is human safe](image1) ![FIELD is human safe](image2) ![CAPACITY reached](image3) ![All Stages ACTIVATED](image4)

Figure 3-19 Additional POWER PORT state examples
3.5 TRENCH

Each ALLIANCE has a TRENCH in their TRENCH RUN that spans the gap between the guardrail and SHIELD GENERATOR. On the top of each TRENCH is an ALLIANCE specific CONTROL PANEL and a yellow stack light.

![TRENCH diagram](image1)

Each TRENCH is a 3 ft. ½ in. (~93 cm) tall, 4 ft. 8 in. (~142 cm) wide, and 3 ft. 5½ in. (~105 cm) deep structure that forms a 4 ft. 4 in. (~132 cm) wide, 2 ft. 4 in. (~71 cm) tall, and 2 ft. 6 in. (~76 cm) deep tunnel. Each TRENCH has two (2) ⅛ in. (~3 mm) thick baseplates. Each baseplate has two (2) 1-in. (~3 cm) diameter holes used to stage POWER CELLS. Holes are 1 ft. 6½ in. (~47 cm) apart.

![TRENCH dimensions](image2)
3.5.1 CONTROL PANEL

A CONTROL PANEL is centered on the top of each TRENCH. The CONTROL PANEL is a 2 in. (~5 cm) tall, 2 ft. 8 in. (~81 cm) diameter disk constructed of two pieces of ¼ in. (~6 mm) thick polycarbonate, spaced apart by ten ½ in. (~13 mm) diameter metal spacers at regular intervals. The centers of the spacers are located 1 in. (~3 cm) in from the outer perimeter of the CONTROL PANEL. The bottom edge of the CONTROL PANEL is located 2 ft. 6¼ in. (~77 cm) above the carpet.

![Diagram of CONTROL PANEL dimensions](image)

Figure 3-22 TRENCH and CONTROL PANEL dimensions

The CONTROL PANEL is divided into eight (8) equal size wedges. Wedges are red, green, blue, and yellow (see Table 3-3 for CMYK values) and visible from above and below the CONTROL PANEL. Colors are arranged as shown in Figure 3-23 and line up top and bottom. The arc length of each wedge is 1 ft. ½ in. (~32 cm). Fasteners in the CONTROL PANEL create holes in the colored wedges.

<table>
<thead>
<tr>
<th>CONTROL PANEL color</th>
<th>Cyan</th>
<th>Magenta</th>
<th>Yellow</th>
<th>Black</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blue</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Green</td>
<td>100</td>
<td>0</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>Red</td>
<td>0</td>
<td>100</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>Yellow</td>
<td>0</td>
<td>0</td>
<td>100</td>
<td>0</td>
</tr>
</tbody>
</table>
A swatch of identical material and colors to those on the CONTROL PANEL is in each Gray Tote of the 2021 Kickoff Kit. The CONTROL PANEL is attached to the TRENCH via a 12 in. (~30 cm) Lazy Susan Bearing (Triangle Manufacturing PN: 12D10346). An identical Lazy Susan Bearing is in each Gray Tote of the 2021 Kickoff Kit. Teams that participated in the 2020 season received these items in the Black Tote of the 2020 Kickoff Kit.
Each CONTROL PANEL has two (2) requirements in order to ENERGIZE the SHIELD GENERATOR, see CONTROL PANEL Scoring for complete details on game play.

- **ROTATION CONTROL:** Rotate CONTROL PANEL at least three (3) (but no more than five (5)) complete revolutions in the same direction. If the CONTROL PANEL is rotated more than five (5) complete revolutions, the count resets to zero (0). The TRENCH light turns on once Stage 2 CAPACITY is reached (i.e. the CONTROL PANEL is ready for ROTATION CONTROL).

A CONTROL PANEL spun faster than 60 revolutions per minute may cause FIELD damage. For more details see MATCH Replays.

- **POSITION CONTROL:** Rotate CONTROL PANEL so a specified color aligns with the sensor for at least five (5) seconds. Once either ALLIANCE reaches Stage 3 CAPACITY, FMS relays a specified color (randomly selected by FMS and one (1) of the three (3) colors not currently read by the ALLIANCE’S TRENCH color sensor) to all OPERATOR CONSOLES simultaneously. The specified color may not be the same for both ALLIANCES. See Table 3-4 for details on how the TRENCH light is used during POSTION CONTROL.

Specific details on the format of the data can be found on the 2021 FRC Control System website.

In the unlikely event that the sensor isn’t currently reporting one (1) of the four (4) colors when Stage 3 reaches CAPACITY (e.g. the sensor is positioned where two (2) color wedges meet), FMS will randomly select the specified color from one (1) of the four (4) colors.
Each TRENCH has a yellow stack light to indicate CONTROL PANEL status.

<table>
<thead>
<tr>
<th>Light State</th>
<th>SHIELD GENERATOR Stage</th>
<th>Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>Off</td>
<td>1, 2, or 3</td>
<td>Stage not at CAPACITY or Stage 3 ACTIVATED</td>
</tr>
<tr>
<td>Solid</td>
<td>2 or 3</td>
<td>The POWER PORT is at CAPACITY, the CONTROL PANEL is ready for use</td>
</tr>
<tr>
<td>Flashing</td>
<td>2</td>
<td>The CONTROL PANEL has rotated the required number for ROTATION CONTROL, but has not yet continuously read a single color for two (2) seconds</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>The CONTROL PANEL has read the required color for POSITION CONTROL for at least three (3) seconds and less than five (5) seconds¹</td>
</tr>
</tbody>
</table>

¹ If a color change is detected during the two (2) second period when the stack light is flashing, the light returns to solid and the color detection timer resets to zero (0).

3.6 POWER CELL

INFINITE RECHARGE is played with POWER CELLS. A POWER CELL is a yellow 7 in. (~18 cm) diameter Medium Bounce Dino-Skin foam ball. The FIRST logo may be printed on each ball in black ink. The ball is made by Flaghouse (PN 1892 YEL) and sold by AndyMark (PN AM-4200a) without a FIRST logo. Three (3) POWER CELLS are in each Black Tote of the 2021 Kickoff Kit.

3.7 Vision Targets

Vision targets made from 2 in. (~5 cm) wide strips of 3M 8830 Scotchlite™ Reflective Material are located on the POWER PORTS and LOADING BAYS. On the POWER PORT, they target the location of the INNER and OUTER PORTS and trace the bottom perimeter of the OUTER PORT. The target has an overall height of 1 ft. 5 in. (~43 cm), and a width of 3 ft. 3¼ in. (~100 cm). The bottom of the target is 6 ft. 9¼ in. (~206 cm) above the carpet. An 8 ft. (~243 cm) strip of 3M 8830 Scotchlite™ Reflective Material is in each Kickoff Kit.
The LOADING BAY target is a 7 in. (~18 cm) wide by 11 in. (~28 cm) tall rectangle. The target is centered on the width of the LOADING BAY and located 11 in. (~28 cm) above the carpet.

3.8 The FIELD Management System

The Field Management System (FMS) is the electronics core responsible for sensing and controlling the FIRST Robotics Competition FIELD. The FMS encompasses all FIELD electronics, including computers, REFEREE touchscreens, wireless access point, sensors, stack lights, E-Stops, etc.

When a DRIVE TEAM connects the Ethernet cable from their assigned PLAYER STATION to their OPERATOR CONSOLE, the Driver Station software on the OPERATOR CONSOLE computer will communicate with FMS. Once connected, the open ports available are described in Table 3-5.
Table 3-5 Open FMS ports

<table>
<thead>
<tr>
<th>Port</th>
<th>Designation</th>
<th>Bi-directional?</th>
</tr>
</thead>
<tbody>
<tr>
<td>UDP/TCP 1180-1190</td>
<td>Camera data from the roboRIO to the Driver Station when the camera is connected the roboRIO via USB</td>
<td>Yes</td>
</tr>
<tr>
<td>TCP 1735</td>
<td>SmartDashboard</td>
<td>Yes</td>
</tr>
<tr>
<td>UDP 1130</td>
<td>Dashboard-to-ROBOT control data</td>
<td>Yes</td>
</tr>
<tr>
<td>UDP 1140</td>
<td>ROBOT-to-Dashboard status data</td>
<td>Yes</td>
</tr>
<tr>
<td>HTTP 80</td>
<td>Camera connected via switch on the ROBOT</td>
<td>Yes</td>
</tr>
<tr>
<td>HTTP 443</td>
<td>Camera connected via switch on the ROBOT</td>
<td>Yes</td>
</tr>
<tr>
<td>UDP/TCP 554</td>
<td>Real-Time Streaming Protocol for h.264 camera streaming</td>
<td>Yes</td>
</tr>
<tr>
<td>UDP/TCP 1250</td>
<td>CTRE Diagnostics Server</td>
<td>Yes</td>
</tr>
<tr>
<td>UDP/TCP 5800-5810</td>
<td>Team use</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Teams may use these ports as they wish if they do not employ them as outlined above (e.g. TCP 1180 can be used to pass data back and forth between the ROBOT and the Driver Station software if the team chooses not to use the camera on USB). Note that ROBOT code cannot be deployed while connected to the FMS. Additional information about the FMS may be found in the FMS Whitepaper.

The FMS provides the specified color for POSITION CONTROL to the Driver Station software, see CONTROL PANEL for additional details.

While the FMS provides the specified color for POSITION CONTROL to each team’s Driver Station, teams must write the necessary ROBOT code to make use of the information during a MATCH.

The FMS alerts participants to milestones in the MATCH using audio cues detailed in Table 3-6. Please note that audio cues are intended as a courtesy to participants and not intended as official MATCH markers. If there is a discrepancy between an audio cue and the FIELD timers, the FIELD timers are the authority.

Table 3-6 Audio cues

<table>
<thead>
<tr>
<th>Event</th>
<th>Timer Value</th>
<th>Audio Cue</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATCH Start</td>
<td>0:15 (for AUTO)</td>
<td>“Cavalry Charge”</td>
</tr>
<tr>
<td>AUTO Ends</td>
<td>0:00 (for AUTO)</td>
<td>“Buzzer”</td>
</tr>
<tr>
<td>TELEOP Begins</td>
<td>2:15</td>
<td>“Three Bells”</td>
</tr>
<tr>
<td>ENDGAME warning</td>
<td>0.30</td>
<td>“Imperial Alarm”</td>
</tr>
<tr>
<td>MATCH End</td>
<td>0:00</td>
<td>“Buzzer”</td>
</tr>
<tr>
<td>MATCH Stopped</td>
<td>n/a</td>
<td>“Foghorn”</td>
</tr>
<tr>
<td>ROTATION CONTROL complete</td>
<td>n/a</td>
<td>“Whirring”</td>
</tr>
<tr>
<td>POSITION CONTROL complete</td>
<td>n/a</td>
<td>“Charging Up”</td>
</tr>
</tbody>
</table>
4 MATCH PLAY

During INFINITE RECHARGE®️, two (2) ALLIANCES (an ALLIANCE is a cooperative of up to four (4) FIRST Robotics Competition teams) play MATCHES, set up and executed per the details described below.

4.1 Setup

4.1.1 POWER CELLS

Forty-eight (48) POWER CELLS are staged as follows:

A. five (5) POWER CELLS in each of the two (2) TRENCH RUNS
 i. two (2) POWER CELLS are placed on each of the TRENCH baseplates further away from the center of the FIELD.
 ii. three (3) POWER CELLS are placed centered in the width of each TRENCH RUN, spaced at 3-ft. (~91 cm) intervals. Small rings are used to keep them in place prior to the start of a MATCH. Rings are ⅛ in. (~3 mm) thick, 1¾ in. (~4 cm) diameter O-rings (McMaster Item#: 9452K63). Rings are secured to the carpet by tape.

B. five (5) POWER CELLS placed on the floor protection inside each ALLIANCE’S RENDEZVOUS POINT as shown in Figure 4-2.

C. five (5) POWER CELLS on the racks in each ALLIANCE STATION’S LOADING BAY,

D. each of the three (3) teams may preload up to three (3) POWER CELLS in their ROBOT, such that they are fully and solely supported by that ROBOT, and

E. remaining POWER CELLS (zero (0) to nine (9) per ALLIANCE, depending on decisions made in D) inside the corresponding ALLIANCE’S RENDEZVOUS POINT as shown in Figure 4-2.
Figure 4-1: POWER CELL setup

Figure 4-2: POWER CELL setup inside RENDEZVOUS POINT
4.1.2 ROBOTS

Each DRIVE TEAM stages their ROBOT such that at least part of its BUMPERS are intersecting the infinite vertical volume created by the corresponding ALLIANCE’S INITIATION LINE.

If order placement matters to either or both ALLIANCES, the ALLIANCE must notify the Head REFEREE during setup for that MATCH. Upon notification, the Head REFEREE will require ALLIANCES to alternate placement of all ROBOTS. In a Qualification MATCH, ROBOTS are placed in the following order: Red Station 1 ROBOT, Blue Station 1 ROBOT, Red Station 2 ROBOT, Blue Station 2 ROBOT, Red Station 3 ROBOT, Blue Station 3 ROBOT. In a Playoff MATCH, the same pattern is applied, but instead of Blue ALLIANCE placing last, the higher seeded ALLIANCE (regardless of color) places last.

4.1.3 Humans

DRIVERS, COACHES, and HUMAN PLAYERS stage behind the STARTING LINE inside their ALLIANCE STATION. TECHNICIANS stage in the event-designated area near the FIELD.

4.2 Autonomous Period

The first phase of each MATCH is called Autonomous (AUTO) and consists of the first fifteen (0:15) seconds. During AUTO, ROBOTS operate without any DRIVE TEAM control or input. ROBOTS attempt to score POWER CELLS in POWER PORTS, retrieve additional POWER CELLS from around the FIELD, and exit the infinite vertical volume created by the corresponding ALLIANCE’S INITIATION LINE any time before the end of the phase.

4.3 Teleoperated Period

The second phase of each MATCH is called the Teleoperated Period (TELEOP) and consists of the remaining two minutes and fifteen seconds (2:15). During this phase, DRIVERS remotely operate ROBOTS to retrieve and score POWER CELLS in POWER PORTS and manipulate CONTROL PANELS to ACTIVATE Stages of the SHIELD GENERATOR.

The final thirty (0:30) seconds of TELEOP is the ENDGAME, during which ROBOTS attempt to ENERGIZE the SHIELD GENERATOR.

4.4 Scoring

ALLIANCES are rewarded for accomplishing various actions through the course of a MATCH, including ROBOT movement during AUTO, scoring POWER CELLS in POWER PORTS, manipulating CONTROL PANELS, ACTIVATING Stages of the SHIELD GENERATOR, ENERGIZING the SHIELD GENERATOR, and winning or tying MATCHES.

Rewards are granted via either MATCH points (which contribute to the ALLIANCE’S MATCH score) or Ranking Points (which increase the measure used to rank teams in the Qualification Tournament). Such actions, their criteria for completion, and their point values are listed in Table 4-2.

All scores, except ENDGAME bonuses, are assessed and updated throughout the MATCH.

4.4.1 POWER PORT Scoring

ALLIANCES generate energy by scoring POWER CELLS into one (1) of three (3) openings of their POWER PORT. To be considered scored, the POWER CELL must pass through the BOTTOM, OUTER,
or INNER PORTS and exit through the respective scoring sensors during the MATCH or within five (5) seconds after the MATCH (regardless of how many POWER CELLS are being processed after the end of the MATCH).

If a POWER CELL becomes jammed in the BOTTOM, INNER, or OUTER PORT, credit for the jammed POWER CELL is granted in the period during which the POWER CELL became stuck.

Lights on the POWER PORT indicate progress towards the CAPACITY of the current Stage of the SHIELD GENERATOR. See POWER PORT for more details.

The final assessment of POWER CELLS scored in POWER PORTS is made five (5) seconds after the ARENA timer displays zero (0) following AUTO and TELEOP, respectively.

POWER CELLS scored during the five (5) seconds after the ARENA timer displays zero (0) following AUTO earn AUTO points and, if STAGE 1 has been ACTIVATED, count towards STAGE 2 CAPACITY.

4.4.2 SHIELD GENERATOR Scoring

The SHIELD GENERATOR stores energy generated by scored POWER CELLS. ALLIANCES work to make the SHIELD GENERATOR OPERATIONAL and ENERGIZED in order to protect FIRST City.

The SHIELD GENERATOR has three (3) Stages that need to be charged to CAPACITY and ACTIVATED consecutively. CAPACITY is the number of POWER CELLS, defined in Table 4-1, that must be scored to charge each Stage. Each POWER CELL, regardless of the POWER PORT opening in which it scores, counts equally toward CAPACITY.

<table>
<thead>
<tr>
<th>Stage</th>
<th>CAPACITY</th>
<th>ACTIVATED when...</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>9</td>
<td>nine (9) POWER CELLS are scored & TELEOP has begun</td>
</tr>
<tr>
<td>2</td>
<td>15</td>
<td>fifteen (15) POWER CELLS are scored in Stage 2 & ROTATION CONTROL is complete</td>
</tr>
<tr>
<td>3</td>
<td>15</td>
<td>fifteen (15) POWER CELLS are scored in Stage 3 & POSITION CONTROL is complete</td>
</tr>
</tbody>
</table>

As the season progresses, the CAPACITY required for each Stage of the SHIELD GENERATOR may increase. While Stage CAPACITY will not change between weeks of Regional or District Competition play, the Stage CAPACITY may be changed for District Championship and/or FIRST® Championship play. Teams will be notified of changes in Stage CAPACITY no later than the scheduled Team Update prior to the date of the event.

POWER CELLS scored after a Stage is at CAPACITY generate MATCH points but do not contribute to the next Stage’s CAPACITY. POWER CELLS scored after Stage 3 is ACTIVATED continue to generate MATCH points.

SHIELD GENERATOR lights indicate ACTIVATED Stages. See SHIELD GENERATOR Lighting for more details.
4.4.3 CONTROL PANEL Scoring

CONTROL PANELS ACTIVATE SHIELD GENERATOR Stages two (2) and three (3) as described in CONTROL PANEL. CONTROL PANEL requirements (i.e. ROTATION CONTROL and POSITION CONTROL) are not evaluated until the respective Stage is at CAPACITY. A Stage may be ACTIVATED once it reaches CAPACITY, and a Stage must be ACTIVATED before the next Stage can begin charging.

Once all three (3) Stages are ACTIVATED, the SHIELD GENERATOR is ENERGIZED (the SHIELD GENERATOR does not need to be OPERATIONAL to be ENERGIZED and vice versa.)

4.4.4 GENERATOR SWITCH Scoring

ALLIANCES use their GENERATOR SWITCH to earn MATCH points and make the SHIELD GENERATOR OPERATIONAL.

A ROBOT is considered PARKED if, five (5) seconds after the ARENA timer displays zero (0) following TELEOP, it is fully supported (either directly or transitively) by the SHIELD GENERATOR and not in contact with any carpet outside its ALLIANCE’S RENDEZVOUS POINT, but without having met the criteria for HANGING.

A ROBOT is considered HANGING if, five (5) seconds after the ARENA timer displays zero (0) following TELEOP, it is fully supported (either directly or transitively) by its GENERATOR SWITCH.

A GENERATOR SWITCH is considered LEVEL if, five (5) seconds after the ARENA timer displays zero (0) following TELEOP, both following criteria are met:

A. it is in the LEVEL range, and
B. all ALLIANCE ROBOTS contacting the GENERATOR SWITCH are HANGING.

The final assessment of a LEVEL GENERATOR SWITCH and HANGING or PARKED ROBOTS is made five (5) seconds after the ARENA timer displays zero (0) following TELEOP, at which point the Audience Display stops updating and the lights on the SHIELD GENERATOR flash three (3) times.

The SHIELD GENERATOR is considered to be OPERATIONAL when the ALLIANCE’S ENDGAME SCORE is ≥ sixty-five (65) points.
4.4.5 Point Values

Point values for tasks in INFINITE RECHARGE are detailed in Table 4-2.

Table 4-2: Point values

<table>
<thead>
<tr>
<th>Award</th>
<th>Awarded for…</th>
<th>AUTO</th>
<th>TELEOP</th>
<th>Qual.</th>
</tr>
</thead>
<tbody>
<tr>
<td>INITIATION LINE</td>
<td>exit the infinite vertical volume created by the corresponding ALLIANCE’S INITIATION LINE any time before the end of AUTO (per ROBOT)</td>
<td>5</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>POWER CELLS</td>
<td>scored in BOTTOM PORT</td>
<td>2</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>scored in OUTER PORT</td>
<td>4</td>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>scored in INNER PORT</td>
<td>6</td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>CONTROL PANEL</td>
<td>ROTATION CONTROL</td>
<td>-</td>
<td>15</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>POSITION CONTROL</td>
<td>-</td>
<td>20</td>
<td>-</td>
</tr>
<tr>
<td>ENDGAME Points</td>
<td>HANG (per ROBOT)</td>
<td>-</td>
<td>25</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>PARK (per ROBOT)</td>
<td>-</td>
<td>5</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>LEVEL with 1-3 ROBOTS HANGING (per ALLIANCE)</td>
<td>15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SHIELD GENERATOR OPERATIONAL</td>
<td>earning at least sixty-five (65) ENDGAME points</td>
<td></td>
<td></td>
<td>1 Ranking Point</td>
</tr>
<tr>
<td>SHIELD GENERATOR ENERGIZED</td>
<td>Stage 3 ACTIVATED</td>
<td>-</td>
<td>-</td>
<td>1 Ranking Point</td>
</tr>
<tr>
<td>Tie</td>
<td>completing a MATCH with the same number of points as your opponent</td>
<td>-</td>
<td>-</td>
<td>1 Ranking Point</td>
</tr>
<tr>
<td>Win</td>
<td>completing a MATCH with more points than your opponent</td>
<td>-</td>
<td>-</td>
<td>2 Ranking Point</td>
</tr>
</tbody>
</table>

An ALLIANCE can earn up to four (4) Ranking Points (RP) per Qualification MATCH, as described in Table 4-2. There are no RP, or comparable point bonuses, in Playoff MATCHES.
4.5 Rule Violations

Upon a rule violation, one or more of the penalties listed in Table 4-3 will be assessed.

Table 4-3 Rule violations

<table>
<thead>
<tr>
<th>Penalty</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>FOUL</td>
<td>a credit of three (3) points towards the opponent’s MATCH score</td>
</tr>
<tr>
<td>TECH FOUL</td>
<td>a credit of fifteen (15) points toward the opponent’s MATCH score</td>
</tr>
<tr>
<td>YELLOW CARD</td>
<td>a warning issued by the Head REFEREE for egregious ROBOT or team member behavior or rule violations. A subsequent YELLOW CARD within the same tournament phase results in a RED CARD.</td>
</tr>
<tr>
<td>RED CARD</td>
<td>a penalty assessed for egregious ROBOT or team member behavior or rule violations which results in a team being DISQUALIFIED for the MATCH</td>
</tr>
<tr>
<td>DISABLED</td>
<td>ROBOT is commanded to deactivate all outputs, rendering the ROBOT inoperable for the remainder of the MATCH</td>
</tr>
<tr>
<td>DISQUALIFIED</td>
<td>the state of a team in which they receive zero (0) MATCH points and zero (0) Ranking Points in a Qualification MATCH or causes their ALLIANCE to receive zero (0) MATCH points in a Playoff MATCH</td>
</tr>
</tbody>
</table>

Some rule violations escalate if the REFEREE determines an action was “repeated.” While there’s no official FIRST Robotics Competition definition of repeated, it’s meant to apply to rule violations that occur more than once within a MATCH.

The official FIRST Robotics Competition definition of momentary is fewer than three (3) seconds. The intent of using this word is to provide a reference for our community. It is not the intent for REFEREEES to provide a count for these time periods.

See YELLOW and RED CARDS for additional details.

4.5.1 Violation Details

There are several styles of violation wording used in this manual. Below are some example violations and a clarification of the way the violation would be assessed. The examples shown do not represent all possible violations, but rather a representative set of combinations.

Table 4-4: Violation examples

<table>
<thead>
<tr>
<th>Example Violation</th>
<th>Expanded Interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td>FOUL</td>
<td>Upon violation, a FOUL is assessed against the violating ALLIANCE</td>
</tr>
<tr>
<td>TECH FOUL and YEL</td>
<td>Upon violation, a TECH FOUL is assessed against the violating ALLIANCE. After the MATCH, the Head REFEREE presents the violating team with a YELLOW CARD.</td>
</tr>
<tr>
<td>FOUL, if contact</td>
<td>Upon violation, a FOUL is assessed against the violating ALLIANCE. If the secondary condition is additionally met at any point while still in violation of the rule, in this case contact is made with an opponent ROBOT, a TECH FOUL is additionally assessed against the violating ALLIANCE.</td>
</tr>
<tr>
<td>FOUL per additional POWER CELL. If egregious, YELLOW CARD</td>
<td>Upon violation, a number of FOULS are assessed against the violating ALLIANCE equal to the number of additional POWER CELLS beyond the permitted quantity. Additionally, if the REFEREEES determine that the action was egregious, the Head REFEREE presents the violating team with a YELLOW CARD after the MATCH.</td>
</tr>
</tbody>
</table>
Example Violation

<table>
<thead>
<tr>
<th>Violation</th>
<th>Expanded Interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td>TECH FOUL, plus an additional TECH FOUL for every five (5) seconds in which the situation is not corrected.</td>
<td>Upon violation, a TECH FOUL is assessed against the violating ALLIANCE and the REFEREE begins to count. Their count continues until the criteria to discontinue the count are met, and for each five (5) seconds within that time, an additional TECH FOUL is assessed against the violating ALLIANCE. A ROBOT in violation of this type of rule for fifteen (15) seconds would receive a total of four (4) TECH FOULS (assuming no other rules were simultaneously being violated).</td>
</tr>
</tbody>
</table>
| RED CARD for the ALLIANCE | After the MATCH, the Head REFEREE presents the violating ALLIANCE with a RED CARD in the following fashion:
 a) In a PLAYOFF MATCH, a single RED CARD is assessed to the ALLIANCE.
 b) In all other scenarios, each team on the ALLIANCE is issued a RED CARD. |

4.6 DRIVE TEAM

A DRIVE TEAM is a set of up to five (5) people from the same FIRST Robotics Competition team responsible for team performance for a specific MATCH. There are four (4) specific roles on a DRIVE TEAM which ALLIANCES can use to assist ROBOTS with INFINITE RECHARGE. Only one (1) of five (5) DRIVE TEAM members is permitted to be an adult mentor.

The intent of the definition of DRIVE TEAM and DRIVE TEAM related rules is that, barring extenuating circumstances, the DRIVE TEAM consists of people who arrived at the event affiliated with that team and are responsible for their team’s and ROBOT’S performance at the event (this means a person may be affiliated with more than one (1) team). The intent is not to allow teams to “adopt” members of other teams for strategic advantage for the loaning team, borrowing team, and/or their ALLIANCE (e.g. an ALLIANCE CAPTAIN believes one of their DRIVERS has more experience than a DRIVER on their 1st pick, and the teams agree the 1st pick team will “adopt” that DRIVER and make them a member of their DRIVE TEAM for Playoffs).

The definition isn’t stricter for two (2) main reasons. First, to avoid additional bureaucratic burden on teams and event volunteers (e.g. requiring that teams submit official rosters that Queuing must check before allowing a DRIVE TEAM into the ARENA). Second, to provide space for exceptional circumstances that give teams the opportunity to display Gracious Professionalism (e.g. a bus is delayed, a COACH has no DRIVERS, and their pit neighbors agree to help by loaning student DRIVERS as temporary members of the team until their bus arrives).
Table 4-5 DRIVE TEAM roles

<table>
<thead>
<tr>
<th>Role</th>
<th>Description</th>
<th>Max./DRIVE TEAM</th>
<th>Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>COACH</td>
<td>a guide or advisor</td>
<td>1</td>
<td>Pre-college student or adult mentor Must wear “COACH” button</td>
</tr>
<tr>
<td>DRIVER</td>
<td>an operator and controller of the ROBOT</td>
<td>3</td>
<td>Pre-college student Must wear one (1) of the three (3) “DRIVE TEAM” buttons</td>
</tr>
<tr>
<td>HUMAN PLAYER</td>
<td>a POWER CELL manager</td>
<td>1</td>
<td>Pre-college student or adult mentor Must wear “TECHNICIAN” button</td>
</tr>
<tr>
<td>TECHNICIAN</td>
<td>a resource for ROBOT troubleshooting, setup, and removal from the FIELD</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

The TECHNICIAN provides teams with a technical resource for pre-MATCH setup, ROBOT connectivity, OPERATOR CONSOLE troubleshooting, and post-MATCH removal of the ROBOT. Some pre-MATCH responsibilities for the TECHNICIAN may include, but are not limited to:

- location of the ROBOT radio, its power connection, and understanding of its indicator lights
- location of the roboRIO and understanding of its indicator lights
- username and password for the OPERATOR CONSOLE
- restarting the Driver Station and Dashboard software on the OPERATOR CONSOLE
- changing the bandwidth utilization (e.g. camera resolution, frame rate, etc.)
- changing a battery
- charging pneumatics

While the TECHNICIAN may be the primary technical member of the DRIVE TEAM, all members of the DRIVE TEAM are encouraged to have knowledge of the basic functionality of the ROBOT, such as the location and operation of the main circuit breaker, connecting and resetting joysticks or gamepads from the OPERATOR CONSOLE, and removing the ROBOT from the FIELD.

4.7 Other Logistics

POWER CELLS that leave the FIELD are placed back into the FIELD approximately at the point of exit by FIELD STAFF (REFEREES, FTAS, or other staff working around the FIELD) at the earliest safe opportunity.

Note that ROBOTS may not deliberately cause POWER CELLS to leave the FIELD (see G7).

An ARENA FAULT is not called for MATCHES that accidentally begin with an incorrect number of, incorrectly positioned, or damaged POWER CELLS. Damaged POWER CELLS are not replaced until the next ARENA reset period. DRIVE TEAMS should alert the FIELD STAFF to any missing or damaged POWER CELLS prior to the start of the MATCH. POWER CELLS are expected to experience wear during events and may be repaired using the guidelines detailed in this POWER CELL Guide.

Once the MATCH is over and the Head REFEREE determines that the FIELD is safe for FIELD STAFF and DRIVE TEAMS, they or their designee change the LED lights to green or green with white and DRIVE TEAMS may retrieve their ROBOT.

In addition to the two minutes and thirty seconds (2:30) of game play, each MATCH also has pre- and post-MATCH time for setup and reset of the ARENA. During ARENA reset, the ARENA is cleared of
ROBOTS and OPERATOR CONSOLES from the MATCH that just ended. The ROBOTS and OPERATOR CONSOLES for the subsequent MATCH are loaded into the ARENA by DRIVE TEAMS at this time. FIELD STAFF also use this time to reset ARENA elements.
5 SAFETY RULES

SAFETY RULES

Safety is always paramount, and each rule below is intended to establish norms at each event that will mitigate injury risk to all participants.

Event staff have the final decision authority for all safety-related issues within a venue.

Please refer to FIRST® Robotics Competition Event Experience web page for safety, conduct, etc. rules not specific to this game or limited to MATCH play. As with all violations in this document, any Event Experience rules also carry the potential consequence of a YELLOW or RED CARD.

S1. Dangerous ROBOTS: not allowed. ROBOTS whose operation or design is dangerous or unsafe are not permitted.

Violation: If before the MATCH, the offending ROBOT will not be allowed to participate in the MATCH. If during the MATCH, the offending ROBOT will be DISABLED.

Examples include, but are not limited to:
- Uncontrolled motion that cannot be stopped by the DRIVE TEAM
- ROBOT parts “flailing” outside of the FIELD
- ROBOTS dragging their battery
- ROBOTS that consistently extend beyond the FIELD

S2. Wait for the green lights. Team members may only enter the FIELD if the POWER PORT LEDs are green or green with white, unless explicitly instructed by a REFEREE or an FTA.

Violation: Verbal warning. If repeated at any point during the event, YELLOW CARD. If egregious, RED CARD.

Egregious violations of S2 include, but are not limited to:
- a. pushing past the FIELD reset person blocking an open gate to get on the FIELD
- b. ignoring a warning to not go on the FIELD

S3. Never step/jump over the guardrail. Team members may only enter or exit the FIELD through open gates.

Violation: Verbal warning. If repeated at any point during the event, YELLOW CARD.

Teams are encouraged to ensure that all members of their DRIVE TEAM are aware of this rule. It’s easy to violate, particularly when teams are doing their best to move on and off the FIELD quickly. The violations of S3 are intended to avoid nuisance penalties, but still enforce safety requirements around the FIELD. There is the potential for injury when stepping over the guardrail.

Violations of S3 apply to the entire team, not specifically to any one individual. For example, a member of team 9999 steps over the guardrail prior to MATCH 3, and a different member steps over the guardrail prior to MATCH 25. The team receives a verbal warning for the first violation and a YELLOW CARD for the second.
2021 FIRST® Robotics Competition

S4. ROBOTS, stay on the FIELD during the MATCH. ROBOTS and anything they control, e.g. a POWER CELL, may not contact anything outside the FIELD with the exception of momentary incursions into the BOTTOM PORT or LOADING BAY Chutes.

Violation: Offending ROBOT will be DISABLED.

Please be conscious of REFEREES and FIELD STAFF working around the ARENA who may be in close proximity to your ROBOT.

S5. Humans, stay off the FIELD during the MATCH. DRIVE TEAMS may not extend any body part into the FIELD during the MATCH.

Violation: YELLOW CARD.

Examples of egregious violations that are likely to escalate the violation to a RED CARD include, but are not limited to, walking onto the FIELD during a MATCH or reaching into the FIELD and grabbing a ROBOT during a MATCH.

S6. Stay out of the Chute. DRIVE TEAMS may not extend any body part into the LOADING BAY Chute. Momentary encroachment into the Chute is an exception to this rule.

Violation: FOUL

S7. Stay off the SHIELD GENERATOR and CONTROL PANELS. Team members may not sit, climb, or hang on the CONTROL PANELS, SHIELD GENERATOR structure, or GENERATOR SWITCH.

Violation: Verbal warning. If repeated at any point during the event, YELLOW CARD.

Teams are encouraged to ensure that all members of their DRIVE TEAM are aware of this rule. There is the potential for injury if horseplay ensues around the SHIELD GENERATOR.

Violations of this rule apply to the entire team, not specifically to any one individual. See example in the S3 blue box.
6 CONDUCT RULES

C1. Egregious or exceptional violations. Egregious behavior beyond what is listed in the rules or repeated violations of any rule or procedure during the event is prohibited.

In addition to rule violations explicitly listed in this manual and witnessed by a REFEREE, the Head REFEREE may assign a YELLOW or RED CARD for egregious ROBOT actions or team member behavior at any time during the event. This includes violations of the event rules found on the FIRST® Robotics Competition Event Experience web page.

Please see YELLOW and RED CARDS for additional detail.

Violation: The Head REFEREE may assign a YELLOW or a RED CARD.

The intent of this rule is to provide the Head REFEREES the flexibility necessary to keep the event running smoothly, as well as keep the safety of all the participants as the highest priority. There are certain behaviors that automatically result in a YELLOW or RED CARD because we believe this behavior puts our community at risk. Those behaviors include, but are not limited to the list below:

a. inappropriate behavior as outlined in the blue box of C2
b. jumping over the FIELD border
c. sitting on the SHIELD GENERATOR structure
d. PINNING in excess of fifteen (15) seconds
e. foregoing the use of the LOADING BAY rack in a way that appears to be deliberate to a REFEREE (e.g. hiding POWER CELLS or violating H10 multiple times during an event)

The Head REFEREE may assign a YELLOW or RED CARD for a single instance of a rule violation such as the examples given in items a-e above, or for multiple instances of any single rule violation.

Teams should be aware that any rule in this manual could escalate to a YELLOW or RED CARD. The HEAD REFEREE has final authority on all rules and violations at an event.

C2. Be a good person. All teams must be civil toward their team members, other team members, competition personnel, FIELD STAFF, and event attendees while at a FIRST Robotics Competition event.

Violation: Behavior will be discussed with team or individual. Violations of this rule are likely to escalate to YELLOW or RED CARDS rapidly (i.e. the threshold for egregious violations is relatively low.)

Examples of inappropriate behavior include, but are not limited to, use of offensive language or other uncivil conduct.

Examples of particularly contemptible behavior that is likely to result in ARENA ejection include, but are not limited to, the following:

a. assault, e.g. throwing something that hits another person (even if unintended)
b. threat, e.g. saying something like “if you don’t reverse that call, I’ll make you regret it”
c. harassment, e.g. badgering someone with no new information after a decision’s been made or a question’s been answered
C3. Asking other teams to throw a MATCH – not cool. A team may not encourage an ALLIANCE, of which it is not a member, to play beneath its ability.

NOTE: This rule is not intended to prevent an ALLIANCE from planning and/or executing its own strategy in a specific MATCH in which all the teams are members of the ALLIANCE.

Violation: Behavior will be discussed with team or individual. Violations of this rule are likely to escalate rapidly to YELLOW or RED CARDS and may lead to dismissal from the event (i.e. the threshold for egregious violations is relatively low.)

Example 1: A MATCH is being played by Teams A, B, and C, in which Team C is encouraged by Team D to not hang on a GENERATOR SWITCH at the end of the MATCH, resulting in Teams A, B, and C not earning a Ranking Point. Team D’s motivation for this behavior is to prevent Team A from rising in the Tournament rankings and negatively affecting Team D’s ranking. Team D has violated C3.

Example 2: A MATCH is being played by Teams A, B, and C, in which Team A is assigned to participate as a SURROGATE. Team D encourages Team A to not participate in the MATCH so that Team D gains ranking position over Teams B and C. Team D has violated C3.

FIRST® considers the action of a team influencing another team to throw a MATCH, to deliberately miss Ranking Points, etc. incompatible with FIRST values and not a strategy any team should employ.

C4. Letting someone coerce you in to throwing a MATCH – also not cool. A team, as the result of encouragement by a team not on their ALLIANCE, may not play beneath its ability.

NOTE: This rule is not intended to prevent an ALLIANCE from planning and/or executing its own strategy in a specific MATCH in which all the ALLIANCE members are participants.

Violation: Behavior will be discussed with team or individual. Violations of this rule are likely to escalate rapidly to YELLOW or RED CARDS and may lead to dismissal from the event (i.e. the threshold for egregious violations is relatively low.)

Example 1: A MATCH is being played by Teams A, B, and C. Team D requests Team C to intentionally position its CONTROL PANEL such that the color isn’t correct, resulting in Teams A, B, and C not earning a Ranking Point. Team C accepts this request from Team D. Team D’s motivation for this behavior is to prevent Team A from rising in the Tournament rankings negatively affecting Team D’s ranking. Team C has violated C4.

Example 2: A MATCH is being played by Teams A, B, and C, in which Team A is assigned to participate as a SURROGATE. Team D requests Team A to intentionally participate in the MATCH so that Team D gains ranking position over Teams B and C. Team A has violated C4.

FIRST considers the action of a team influencing another team to throw a MATCH, to deliberately miss Ranking Points, etc. incompatible with FIRST values and not a strategy any team should employ.
C5. Enter only one (1) ROBOT. Each registered FIRST Robotics Competition team may enter only one (1) ROBOT (or 'Robot', a ROBOT-like assembly equipped with most of its drive base, i.e. its MAJOR MECHANISM that enables it to move around a FIELD) into a 2021 FIRST Robotics Competition Event.

“Entering” a ROBOT (or Robot) into a FIRST Robotics Competition means bringing it to or using it at the event such that it’s an aid to your team (e.g. for spare parts, judging material, or for practice).

While “most of its drive base” is a subjective assessment, for the purposes of C5, an assembly whose drive base is missing all wheels/treads, gearboxes, and belts/chains is not considered a “Robot.” If any of those components are incorporated, the assembly is now considered a “Robot.”

This rule does not prohibit teams from bringing in Robots from other FIRST programs for the purposes of awards presentations or pit displays.

Violation: Verbal warning. Egregious or repeated violations at any point during the event will be addressed by the Head REFEREE, the Lead ROBOT Inspector and/or Event Management.

C6. Show up to your MATCHES. Upon each team’s ROBOT passing initial, complete Inspection, the team must send at least one (1) member of its DRIVE TEAM to the ARENA and participate in each of the team’s assigned Qualification and Playoff MATCHES.

Violation: If ROBOT has passed an initial, complete Inspection, RED CARD.
C7. Be prompt/safe when coming to and going from the FIELD. DRIVE TEAMS may not cause significant or repeated delays during the event to the start of a MATCH, the FIELD reset after a MATCH, or continuation of MATCHES after a TIMEOUT.

Violation: If prior to the MATCH, the offending DRIVE TEAM’S ROBOT will be DISABLED. If after the MATCH, YELLOW CARD.

DRIVE TEAMS are expected to stage their ROBOTS for a MATCH, and remove it from the FIELD afterwards, safely and swiftly. Examples of violations include, but are not limited to:

- late arrival to the FIELD (including across different MATCHES and after a FIELD or ALLIANCE TIMEOUT)
- failing to exit the FIELD once a MATCH is ready to begin (indicated by the green LEDs have turned off)
- installing BUMPERS, charging pneumatic systems, or any other ROBOT maintenance once on the FIELD
- use of alignment devices that are external to the ROBOT (e.g. a DRIVE TEAM could bring and use a measuring tape, as long as there is no delay to the MATCH by doing so)
- failing to remove OPERATOR CONSOLES from the PLAYER STATIONS in a timely manner

At the conclusion of a TIMEOUT, ROBOTS are expected to be staged on the FIELD prior to the timer displaying zero (0) and ready for the MATCH to start.

There are no rules that prohibit use of hand tools (including battery operated tools) while setting up and/or removing ROBOTS from the FIELD provided they do not cause significant delay or safety concern.

C8. Don’t expect to gain by doing others harm. Strategies clearly aimed at forcing the opponent ALLIANCE to violate a rule are not in the spirit of FIRST Robotics Competition and not allowed. Rule violations forced in this manner will not result in an assignment of a penalty to the targeted ALLIANCE.

Violation: FOUL. If repeated during the MATCH, TECH FOUL.

C8 does not apply for strategies consistent with standard gameplay, for example, a Blue ALLIANCE ROBOT contacts a Red ALLIANCE ROBOT in the Blue ALLIANCE’S LOADING ZONE.

C8 requires an intentional act with limited or no opportunity for the TEAM being acted on to avoid the penalty, such as:

- a Blue ALLIANCE ROBOT forcing a Red ALLIANCE ROBOT to have greater than momentary CONTROL of five (5) POWER CELLS.
- a Blue ALLIANCE ROBOT pushing a Red ALLIANCE ROBOT from fully outside the Blue ALLIANCE TRENCH RUN into the Blue ALLIANCE CONTROL PANEL.

C9. One student, one Head REFEREE. A team may only send one (1) pre-college student from its DRIVE TEAM to address the Head REFEREE.
2021 FIRST® Robotics Competition

Violation: The Head REFEREE will not address additional, non-compliant team members or peripheral conversations.

Please see REFEREE Interaction for more information about process and expectations.

C10. Plug in to/be in your PLAYER STATION. The OPERATOR CONSOLE must be used in the PLAYER STATION to which the team is assigned, as indicated on the team sign.

Violation: The MATCH will not start until the situation is corrected. If during a MATCH, DISABLED.

One intent of C10 is to prevent unsafe situations where long tethers to OPERATOR CONSOLE devices increase tripping hazards as the operator moves about the ALLIANCE STATION. In the interest of avoiding nuisance penalties associated with an operator stepping outside of a prescribed area, we prefer to offer a general guideline as to what it means to use the OPERATOR CONSOLE in the ALLIANCE STATION. Provided the operator is within close proximity of their PLAYER STATION, there will be no repercussions. However, an operator located more than approximately ½ PLAYER STATION width away from their own PLAYER STATION, is likely violating C10.

C11. Don’t trick the sensors. Teams may not interfere with any automated scoring hardware.

Violation: RED CARD for the ALLIANCE.
7 GAME RULES: ROBOTS

7.1 Before/After the MATCH

G1. Know your ROBOT setup. When placed on the FIELD for a MATCH, each ROBOT must be:

A. in compliance with all ROBOT rules, i.e. has passed Inspection,
B. the only team-provided item left on the FIELD by the DRIVE TEAM,
C. confined to its STARTING CONFIGURATION,
D. positioned such that its BUMPERS are intersecting the infinite vertical volume created by the corresponding ALLIANCE’S INITIATION LINE, and
E. fully and solely supporting not more than three (3) POWER CELLS (as described in Setup.)

Violation: If fix is a quick remedy, the MATCH won’t start until all requirements are met. If it is not a quick remedy the offending ROBOT will be DISABLED and, at the discretion of the Head REFEREE, must be re-inspected.

Teams are encouraged to position ROBOTS such that it is clear to REFEREES that G1-D is not violated.

If a ROBOT is BYPASSED prior to the start of the MATCH, the DRIVE TEAM may not remove the ROBOT from the FIELD without permission from the Head REFEREE or the FIRST Technical Advisor (FTA).

G2. Teams may not enable their ROBOTS on the FIELD. Teams may not tether to the ROBOT while on the FIELD except in special circumstances (e.g. during TIMEOUTS, after Opening Ceremonies, before an immediate MATCH replay, etc.) and with the express permission from the FTA or a REFEREE.

Violation: YELLOW CARD.

FMS will not enable ROBOTS after the conclusion of the MATCH.

Teams are encouraged to consider rule C7 when developing their ROBOTS.

Tethering includes any wired or wireless connection used to electrically energize and/or control elements on the ROBOT. The safety of teams and volunteers in close proximity to ROBOTS and ARENA elements on the FIELD is of the utmost importance, therefore ROBOTS or ROBOT COMPONENTS may not be enabled in any way on the FIELD once the MATCH has concluded.

ROBOTS need to be safely transported off the FIELD and back to the pits after the MATCH, and there may be bystanders, doorways or height restrictions along the route.

7.2 During the MATCH

7.2.1 During AUTO Only

G3. During AUTO, no defense. During AUTO, a ROBOT’S BUMPERS may not break the plane of their ALLIANCE’S SECTOR (see Figure 3-3.)

Violation: FOUL. If contact with an opponent ROBOT, either directly or transitively through another ROBOT or POWER CELL, TECH FOUL per instance.
G4. During AUTO, behind the lines. During AUTO, DRIVE TEAM members in ALLIANCE STATIONS may not contact anything in front of the STARTING LINES, unless for personal or equipment safety.

Violation: FOUL per item contacted.

Pointing, gesturing, or otherwise extending across the STARTING LINE such that contact is not made with carpet or other ARENA elements is not a violation of this rule.

One example of an exception for equipment safety is if an OPERATOR CONSOLE starts to slide from, or has already fallen off, the PLAYER STATION shelf. In that circumstance, DRIVE TEAM members may step forward to catch or pick it up off the ground and return it to the shelf.

G5. During AUTO, let the ROBOT do its thing. During AUTO, DRIVE TEAMS may not directly or indirectly interact with ROBOTS or OPERATOR CONSOLES unless for personal safety, OPERATOR CONSOLE safety, or pressing an E-Stop.

Violation: FOUL and YELLOW CARD.

7.2.2 POWER CELL Interaction

G6. No more than five (5) POWER CELLS at a time. ROBOTS may not have greater-than-momentary CONTROL of more than five (5) POWER CELLS at a time, either directly or transitively through other objects.

A ROBOT is in CONTROL of a POWER CELL if:

A. the POWER CELL is fully supported by the ROBOT,
B. the POWER CELL travels across the FIELD such that when the ROBOT changes direction, the POWER CELL travels with the ROBOT, or
C. the ROBOT is holding a POWER CELL against a FIELD element in attempt to guard or shield it.

Violation: FOUL per additional POWER CELL. If egregious, YELLOW CARD.

Egregious examples include, but are not limited to:

a. CONTROLLING ten (10) POWER CELLS
b. Repeatedly moving more than five (5) POWER CELLS across one half of the FIELD to the other.

G7. Keep POWER CELLS in bounds. ROBOTS may not intentionally eject POWER CELLS from the FIELD other than through the POWER PORT.

Violation: FOUL per POWER CELL.
G8. POWER CELLS: use as directed. ROBOTS may not deliberately use POWER CELLS in an attempt to ease or amplify the challenge associated with FIELD elements.

Violation: TECH FOUL per POWER CELL.

Examples include, but are not limited to:

a. shooting POWER CELLS at HANGING ROBOTS
b. pushing/placing POWER CELLS into the opponent’s TRENCH to make it harder to pass through it
c. placing/shooting POWER CELLS onto the opponent’s CONTROL PANEL

7.2.3 Zone Specific Restrictions

G9. No full court shots. A ROBOT whose BUMPERS are fully contained by their SECTOR may not cause POWER CELLS to travel into or through their opponent’s SECTOR.

Violation: TECH FOUL per POWER CELL.

REFEREES are not expected to track the movement of POWER CELLS throughout the MATCH. Teams are encouraged to launch POWER CELLS such that it is clear to REFEREES that G9 is not violated.

For the purposes of G9, “travel” means “to move through the air, bounce across the floor, or roll.” A POWER CELL is no longer “travelling” once it stops, contacts an opponent ROBOT, or is CONTROLLED by a ROBOT on their ALLIANCE. The cause (i.e. responsibility for) a POWER CELL “travelling” may transfer from ROBOT to ROBOT as assessed by the REFEREE.
G10. Right of way. A ROBOT whose BUMPERS are intersecting the opponent’s TARGET ZONE, TRENCH RUN, or LOADING ZONE may not contact opponent ROBOTS, regardless of who initiates contact.

Violation: TECH FOUL per instance.

The initiator of the contact is not a factor when determining violations of this rule.

Teams should take note that they are putting themselves at great risk for TECH FOULS if they choose to enter their opponent’s TARGET ZONE, TRENCH RUN or LOADING ZONE.

G11. Give opponents some space. An opponent ROBOT may not contact a ROBOT whose BUMPERS are intersecting its TARGET ZONE or LOADING ZONE, regardless of who initiates contact. ROBOTS in violation of G10 are exempt from this rule.

Violation: TECH FOUL per instance.

The initiator of the contact is not a factor when determining violations of this rule.

Teams should take note that they are putting themselves at great risk for TECH FOULS if they choose to approach an opponent ROBOT intersecting its TARGET ZONE or LOADING ZONE.

Figure 7-2 G10 and G11 examples
Leave the opponent’s CONTROL PANEL alone. During TELEOP, a ROBOT may not contact the opponent’s CONTROL PANEL, either directly, or transitively through a POWER CELL, if
A. the opponent ROBOT is contacting that CONTROL PANEL, and
B. the opponent’s POWER PORT has reached CAPACITY

Violation: In Qualifications MATCHES, opponents are awarded one (1) SHIELD GENERATOR ENERGIZED Ranking Point if not completed at the conclusion of the MATCH. In Playoff MATCHES, TECH FOUL.

Don’t climb on each other unless at the RENDEZVOUS POINT. A ROBOT may not be fully supported by a partner ROBOT unless the partner ROBOT’S BUMPERS are intersecting its RENDEZVOUS POINT.

Violation: TECH FOUL per instance.

During the ENDGAME, don’t touch ROBOTS in their RENDEZVOUS POINT. During the ENDGAME, a ROBOT may not contact, either directly or transitively through a POWER CELL, an opponent ROBOT whose BUMPERS are completely contained in its RENDEZVOUS POINT and not in contact with its GENERATOR SWITCH.

Violation: TECH FOUL.

The initiator of the contact is not a factor when determining violations of this rule.

Teams are encouraged to consider rule C8 when developing their strategies, such as attempting to draw violations of this rule.

During the ENDGAME, don’t mess with HANGING opponents. During the ENDGAME, a ROBOT may not contact, either directly or transitively through a POWER CELL, an opponent’s ROBOT that is contacting its GENERATOR SWITCH and not in their opponent’s RENDEZVOUS POINT.

Violation: The contacted opponent ROBOT, and any partners its supporting, will be considered HANGING, and the opponent’s GENERATOR SWITCH will be considered LEVEL.

The initiator of the contact is not a factor when determining violations of this rule.

Teams are encouraged to consider rule C8 when developing their strategies, such as attempting to draw violations of this rule.

For example, during the ENDGAME, a Blue ALLIANCE ROBOT is in violation of G15 if it is contacting a Red ALLIANCE ROBOT that is both fully contained within the Red ALLIANCE’S RENDEZVOUS POINT and HANGING from the Red ALLIANCE GENERATOR SWITCH.

During the ENDGAME, don’t mess with the opponent’s GENERATOR SWITCH. During the ENDGAME, a ROBOT may not contact, either directly or transitively through a POWER CELL, the opponent’s GENERATOR SWITCH.

Violation: Any opponent ROBOTS contacting their GENERATOR SWITCH when the violation occurred, and any partners its supporting, will be considered HANGING, and the opponent’s GENERATOR SWITCH will be considered LEVEL.
7.2.4 ROBOT Restrictions

G16. **Keep your BUMPERS low.** BUMPERS must be in the BUMPER ZONE (see R18) during the MATCH, unless during the ENDGAME and

A. a ROBOT’S BUMPERS are intersecting its RENDEZVOUS POINT or
B. a ROBOT is supported by a partner ROBOT whose BUMPERS are intersecting its RENDEZVOUS POINT.

Violation: FOUL. If strategic, RED CARD.

An example of a strategic violation of G16 includes, but is not limited to, hitting other ROBOTS with the ROBOT frame.

G17. **Tall ROBOTS not allowed.** ROBOT height, as measured when it’s resting normally on a flat floor, may not exceed 45 in. (~114 cm) above the carpet during the MATCH, with the exception of ROBOTS intersecting their ALLIANCE’S RENDEZVOUS POINT during the ENDGAME.

Violation: TECH FOUL. If the extension blocks a goal, blocks an opponent’s shot, or scores a goal, additional TECH FOUL per instance.

This measurement is intended to be made as if the ROBOT is resting on a flat floor, not relative to the height of the ROBOT from the FIELD carpet.

For example, a ROBOT that is at an angle while traversing a BOUNDARY may actually exceed the height limit when compared to the carpet of the FIELD.

G18. **Don’t overextend yourself.** ROBOTS may not extend more than 12 inches (~30 cm) beyond their FRAME PERIMETER.

Violation: FOUL. If egregious, RED CARD.

Examples of compliance and non-compliance of G18 are shown in Figure 7-3.

Yellow bars represent the limits of the FRAME PERIMETER and are drawn in the same orientation of the ROBOT’S FRAME PERIMETER. Green bars represent a measured
extension from the FRAME PERIMETER that does not violate G18. Red bars represent a measured extension from the FRAME PERIMETER that exceeds the limit in G18). ROBOTS A and C violate G18, whereas ROBOT B does not.

![Diagram showing examples of G18 compliance and non-compliance]

Egregious examples of G18 violations include:

a. extending more than 12 inches (~30 cm) beyond the FRAME PERIMETER to score a POWER CELL
b. extending more than 12 inches (~30 cm) beyond the FRAME PERIMETER to score a HANG
c. expanding to block opponent access to a FIELD element, e.g. GENERATOR SWITCH or POWER PORT
d. expanding into the BOTTOM PORT to disrupt the scoring mechanism

G19. **Keep it together.** ROBOTS may not intentionally detach or leave parts on the FIELD.

Violation: RED CARD.

G20. **Keep your BUMPERS together.** BUMPERS may not fail such that a segment completely detaches, any side of a ROBOT’S FRAME PERIMETER is exposed, or the team number or ALLIANCE color are indeterminate.

Violation: DISABLED.

7.2.5 ROBOT to ROBOT Interaction

G21. **There's a 5-count on pins.** ROBOTS may not PIN an opponent's ROBOT for more than five (5) seconds. A ROBOT is PINNING if it is preventing the movement of an opponent ROBOT by contact, either direct or transitive (such as against a FIELD element). A ROBOT is considered PINNED until the ROBOTS have separated by at least six feet from each other or either ROBOT has moved six feet from where the PIN initiated, whichever comes first. The PINNING ROBOT(S) must then wait for at least three (3) seconds before attempting to PIN the same ROBOT again.

Violation: FOUL, plus an additional TECH FOUL for every five (5) seconds in which the situation is not corrected.

A team’s desired direction of travel is not a consideration when determining if a ROBOT is PINNED.
G22. Don’t collude with your partners to shut down major parts of game play. Two or more ROBOTS that appear to a REFEREE to be working together may not isolate or close off any major component of MATCH play.

Violation: TECH FOUL, plus an additional TECH FOUL for every five (5) seconds in which the situation is not corrected.

<table>
<thead>
<tr>
<th>Examples of violations of this rule include but are not limited to:</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. blocking an opponent’s TRENCH</td>
</tr>
<tr>
<td>b. blocking all the opponent LOADING BAY Chutes</td>
</tr>
<tr>
<td>c. blocking the opponent BOTTOM PORT</td>
</tr>
<tr>
<td>d. shutting down access to all POWER CELLS</td>
</tr>
<tr>
<td>e. quarantining all opponents to a small area of the FIELD</td>
</tr>
<tr>
<td>A single ROBOT blocking access to a particular area of the FIELD is not a violation of this rule.</td>
</tr>
</tbody>
</table>

Two ROBOTS independently playing defense on two opponent ROBOTS is not a violation of this rule.

G23. Don’t tear others down to lift yourself up. ROBOT actions that appear to be deliberate to a REFEREE and that cause damage or inhibition via attaching, tipping, or entangling to an opponent ROBOT are not allowed.

Violation: TECH FOUL and YELLOW CARD. If harm or incapacitation occurs as a result of the strategy, RED CARD.

MECHANISMS outside the FRAME PERIMETER are particularly susceptible to causing damage, drawing this penalty and/or drawing penalties associated with violations of G24 and G25. Teams are encouraged to be cautious of their use of such MECHANISMS when engaging in ROBOT to ROBOT MATCH play.

<table>
<thead>
<tr>
<th>Examples of violations of this rule include, but are not limited to:</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. using a wedge-like MECHANISM to tip opponent ROBOTS</td>
</tr>
<tr>
<td>b. making BUMPER-to-BUMPER contact with an opponent ROBOT that is attempting to right itself after previously falling over and causing them to fall over again</td>
</tr>
</tbody>
</table>

G24. Stay out of other ROBOTS. A ROBOT with a COMPONENT(S) outside its FRAME PERIMETER, other than BUMPERS, may not initiate direct contact with an opponent ROBOT inside the vertical projection of its FRAME PERIMETER using that COMPONENT.

Violation: FOUL per contact.

For the purposes of G24 “initiate direct contact” requires movement towards an opponent ROBOT.

In a collision, it’s possible for both ROBOTS to initiate direct contact.

G25. Damaging other ROBOTS, not allowed. Regardless of intent, a ROBOT may not initiate direct contact inside the vertical projection of an opponent ROBOT’S FRAME PERIMETER that damages or functionally impairs the opponent ROBOT.

ROBOTS with BUMPER gaps are at their own risk regarding damaging contact in these areas by ROBOTS that remain completely inside their own FRAME PERIMETER, other than BUMPERs, as they are not in violation of this rule.

Violation: TECH FOUL and YELLOW CARD.
Some examples of violations of this rule include, but are not limited to:

a. an extension damages a COMPONENT inside an opponent ROBOT’S FRAME PERIMETER
b. an extension powers off an opponent’s ROBOT
c. an extension relieves an opponent’s ROBOT’S air pressure.
d. a ROBOT that unintentionally extends outside its FRAME PERIMETER while tipping and damages a COMPONENT inside an opponent ROBOT’S FRAME PERIMETER

At the conclusion of the MATCH, the HEAD REFEREE may elect to visually inspect a ROBOT to confirm violations of G25 made during a MATCH and remove the violation if the damage cannot be verified.

For the purposes of G25, “initiate direct contact” requires movement towards an opponent ROBOT.

In a collision, it’s possible for both ROBOTS to initiate direct contact.

7.2.6 FIELD Interaction

G26. Be careful what you interact with. ROBOTS and OPERATOR CONSOLES are prohibited from the following actions with regards to interaction with ARENA elements. Items A–C exclude POWER CELLS, HANDLE, and the ALLIANCE’S CONTROL PANEL. Item G excludes the HANDLE.

A. Grabbing
B. Grasping
C. Attaching (including the use of a vacuum or hook tape to anchor to the FIELD carpet and excluding use of the PLAYER STATION hook-and-loop tape, plugging in to the provided power outlet, and plugging the provided Ethernet cable into the OPERATOR CONSOLE)
D. Deforming
E. Becoming entangled
F. Damaging
G. Suspending from

Violation: MATCH will not start until the situation is corrected. If during a MATCH, TECH FOUL. If during a MATCH and longer than momentary or repeated, YELLOW CARD. If offense is via a ROBOT and the Head REFEREE determines that further damage is likely to occur, offending ROBOT will be DISABLED. Corrective action (such as eliminating sharp edges, removing the damaging MECHANISM, and/or re-Inspection) may be required before the ROBOT will be allowed to compete in subsequent MATCHES.

POWER CELLS are expected to undergo a reasonable amount of wear and tear as they are handled by ROBOTS, such as scratching or marking. Gouging, tearing off pieces, or routinely marking POWER CELLS are violations of this rule.
8 GAME RULES: HUMANS

8.1 Before the MATCH

H1. You can’t bring/use anything you want. The only equipment that may be brought to the ARENA and used by DRIVE TEAMS during a MATCH is listed below. Regardless if equipment fits criteria below, it may not be employed in a way that breaks any other rules, introduces a safety hazard, blocks visibility for FIELD STAFF or audience members, or jams or interferes with the remote sensing capabilities of another team or the FIELD.

A. the OPERATOR CONSOLE,
B. non-powered signaling devices,
C. reasonable decorative items,
D. special clothing and/or equipment required due to a disability,
E. devices used solely for planning or tracking strategy,
F. devices used solely to record gameplay,
G. non-powered Personal Protective Equipment (examples include, but aren’t limited to, gloves, eye protection, and hearing protection)

Items brought to the ARENA under allowances B-G must meet all of the following conditions:

i. do not connect or attach to the OPERATOR CONSOLE, FIELD, or ARENA
ii. do not connect or attach to another ALLIANCE member (other than items in category G)
iii. do not communicate with anything or anyone outside of the ARENA
iv. do not communicate with the TECHNICIAN
v. do not include any form of enabled wireless electronic communication
vi. do not in any way affect the outcome of a MATCH, other than by allowing the DRIVE TEAM to
 a. plan or track strategy for the purposes of communication of that strategy to other
 ALLIANCE members or
 b. use items allowed per part B to communicate with the ROBOT.

Violation: MATCH will not start until situation remedied. If discovered or used inappropriately during a MATCH, YELLOW CARD.

Examples of equipment that may be considered a safety hazard in the confined space of the ALLIANCE STATION include, but are not limited to, a step stool or a large signaling device.

Examples of remote sensing capabilities include, but are not limited to, vision systems, acoustic range finders, sonars, and infrared proximity sensors.

Use of imagery that, to a reasonably astute observer, mimics the Vision Targets employed on the FIELD is a violation of H1.

Examples of wireless communication include, but are not limited to, radios, walkie-talkies, cell phones, Bluetooth communications, and Wi-Fi.)

H2. Know your DRIVE TEAM positions. Prior to the start of the MATCH, DRIVE TEAMS and any control devices worn or held by HUMAN PLAYERS and/or DRIVERS must be positioned as follows:
A. HUMAN PLAYERS, DRIVERS, and COACHES in their ALLIANCE STATION,
B. TECHNICIANS in the designated area outside the ALLIANCE STATION, and
C. not in contact with the OPERATOR CONSOLE

Violation: MATCH won’t start until situation is corrected.

For the purposes of FIRST Robotics Competition, any device connected to the OPERATOR CONSOLE is considered a control device because REFEREES are not expected to differentiate between devices that can or cannot control the ROBOT.

H3. Leave the POWER CELLS alone. Prior to the start of the MATCH, DRIVE TEAMS may not rearrange the POWER CELLS within the ALLIANCE STATION or staged on the FIELD (that are not staged inside a ROBOT).

Violation: MATCH will not start until the situation is corrected.

8.2 During the MATCH

H4. COACHES and other teams: hands off the controls. A ROBOT shall be operated only by the DRIVERS and/or HUMAN PLAYERS of that team.

Violation: DISABLED.

Exceptions may be made before a MATCH for major conflicts, e.g. religious holidays, major testing, transportations issues, etc.

H5. No wandering. During the MATCH, DRIVERS, COACHES, and HUMAN PLAYERS may not contact anything outside the ALLIANCE STATION and TECHNICIANS may not contact anything outside their designated area. Exceptions are granted in cases concerning safety and for actions that are inadvertent, momentary, and inconsequential.

Violation: FOUL per instance.

H6. POWER CELLS through LOADING BAYS only. POWER CELLS may only be introduced to the FIELD

- **A.** during TELEOP,
- **B.** by a DRIVER or HUMAN PLAYER, and
- **C.** through the LOADING BAY.

Violation: FOUL per POWER CELL.

H7. COACHES, no POWER CELLS. During a MATCH, COACHES may not touch POWER CELLS, unless for safety purposes.

Violation: FOUL per POWER CELL.

H8. This rule has been renumbered as C11.

H9. POWER CELLS, recycle. During TELEOP, an ALLIANCE may not have more than fourteen (14) POWER CELLS in their ALLIANCE STATION.

Violation: FOUL per POWER CELL.

If the POWER CELL count exceeds fourteen (14), excess POWER CELLS must be introduced into the FIELD immediately.
As soon as a fifteenth POWER CELL arrives in the ALLIANCE STATION, the ALLIANCE should be making a concerted good will effort to enter any extra POWER CELLS back on to the FIELD as quickly and as safely as possible.

There is no intent to issue penalties for delays due to DRIVERS or HUMAN PLAYERS having to move around their ALLIANCE partners while attempting to clear surplus POWER CELLS or because TELEOP began with more than fourteen (14) POWER CELLS in the ALLIANCE STATION due to scoring by opponents during AUTO. However, if a team is perceived as lagging in the judgement of a REFEREE, they will be issued a penalty.

It is the HUMAN PLAYERS’ responsibility to be aware of their surroundings.

H10. POWER CELLS go on the rack. POWER CELLS must be stored on the LOADING BAY racks. An ALLIANCE making a concerted, good-will effort to transport POWER CELLS from the CORRAL to a rack or Chute is not in violation of this rule.

VIOLATION: FOUL. If repeated, TECH FOUL.

The LOADING BAY rack holds fourteen (14) POWER CELLS and enables teams and REFEREES to count POWER CELLS in an ALLIANCE STATION.

H10 means that POWER CELLS may neither be stored in the CORRAL during the MATCH nor are they required to contact the LOADING BAY rack before entering the FIELD.

As G4 prohibits using the rack during AUTO, an ALLIANCE that removes POWER CELLS from the CORRAL during AUTO and waits to place them on the rack until the start of TELEOP is making a “concerted good-will effort.”

Teams are encouraged to make it clear to REFEREES that H10 is not violated.

8.3 In the ARENA

H11. By invitation only. Only DRIVE TEAMS for the current MATCH are allowed in their respective ALLIANCE STATIONS.

Violation: MATCH will not start until the situation is corrected.

H12. Identify yourself. DRIVE TEAMS must wear proper identification while in the ARENA. Proper identification consists of:

A. All DRIVE TEAM members wearing their designated buttons above the waist in a clear visible location at all times while in the ARENA.
B. The COACH wearing the “COACH” button.
C. The DRIVERS and HUMAN PLAYERS each wearing a “DRIVE TEAM” button.
D. The TECHNICIAN wearing the “TECHNICIAN” button.
E. During a Playoff MATCH, the ALLIANCE CAPTAIN clearly displaying the designated ALLIANCE CAPTAIN identifier (e.g. hat or armband).

Violation: MATCH will not start until the situation is corrected. Those not displaying identification must leave the ARENA.

H13. Don’t abuse ARENA access. Team members (except DRIVERS, HUMAN PLAYERS, and COACHES) who are granted access to restricted areas in and around the ARENA (e.g. via
2021 FIRST® Robotics Competition

TECHNICIAN button, event issued Media badges, etc.) may not coach or use signaling devices
during the MATCH. Exceptions will be granted for inconsequential infractions and in cases
concerning safety.

Violation: YELLOW CARD.

The TECHNICIAN’S role is to help the team prepare the ROBOT so it can perform at its
full potential during a MATCH. The TECHNICIAN is not an additional COACH, DRIVER,
or HUMAN PLAYER.

Team members in open-access spectator seating areas are not considered to be in a
restricted area and are not prevented from coaching or using signaling devices. See E2 in the Event Rules Manual for related details.

H14. Don’t mess with POWER CELLS. Teams may not modify POWER CELLS in any way.
Temporary deformation to pre-load a ROBOT is an exception to this rule.

Violation: RED CARD.

Marking, cutting or standing on POWER CELLS are examples of violations.

H15. Don’t bang on the glass. Team members may never strike or hit the PLAYER STATION plastic
windows.

Violation: Verbal warning. If subsequent violations in more than one MATCH, YELLOW CARD.

H16. Be careful what you interact with. DRIVE TEAMS are prohibited from the following actions with
regards to interaction with ARENA elements.

A. Climbing
B. Hanging
C. Deforming
D. Damaging

Violation: MATCH will not start until situation is corrected. If during a MATCH, TECH FOUL.
9 ROBOT CONSTRUCTION RULES

This section of the 2021 FIRST® Robotics Competition Game Manual presents rules relevant to the construction of a 2021 FIRST Robotics Competition ROBOT. ROBOTS must pass Inspection at each FIRST Robotics Competition event to confirm compliance before being allowed to compete in a Qualification or Playoff MATCH, per Inspection & Eligibility Rules.

9.1 Overview

The rules listed below explicitly address legal parts and materials and how those parts and materials may be used on a 2021 ROBOT. A ROBOT is an electromechanical assembly built by the FIRST Robotics Competition team to play the current season’s game and includes all the basic systems required to be an active participant in the game – power, communications, control, BUMPERS, and movement about the FIELD.

There are many reasons for the structure of the rules, including safety, reliability, parity, creation of a reasonable design challenge, adherence to professional standards, impact on the competition, and compatibility with the Kit of Parts (KOP). The KOP is the collection of items listed on the 2020 and 2021 Kickoff Kit checklists, distributed to the team via FIRST Choice in the 2020 and/or 2021 season, or paid for completely (except shipping) with a Product Donation Voucher (PDV) from the 2020 and/or 2021 season.

Another intent of these rules is to have all energy sources and active actuation systems on the ROBOT (e.g. batteries, compressors, motors, servos, cylinders, and their controllers) drawn from a well-defined set of options. This is to ensure that all teams have access to the same actuation resources and that the Inspectors are able to accurately and efficiently assess the legality of a given part.

ROBOTS are made up of COMPONENTS and MECHANISMS. A COMPONENT is any part in its most basic configuration, which cannot be disassembled without damaging or destroying the part or altering its fundamental function. A MECHANISM is a COTS or custom assembly of COMPONENTS that provide specific functionality on the ROBOT. A MECHANISM can be disassembled (and then reassembled) into individual COMPONENTS without damage to the parts.

Many rules in this section reference Commercial-Off-The-Shelf (COTS) items. A COTS item must be a standard (i.e. not custom order) part commonly available from a VENDOR for all teams for purchase. To be a COTS item, the COMPONENT or MECHANISM must be in an unaltered, unmodified state (with the exception of installation or modification of any software). Items that are no longer commercially available but are functionally equivalent to the original condition as delivered from the VENDOR are considered COTS and may be used.

Example 1: A team orders two (2) ROBOT grippers from RoboHands Corp. and receives both items. They put one in their storeroom and plan to use it later. Into the other, they drill “lightening holes” to reduce weight. The first gripper is still classified as a COTS item, but the second gripper is now a FABRICATED ITEM, as it has been modified.

Example 2: A team obtains openly available blueprints of a drive module commonly available from Wheels-R-Us Inc. and has local machine shop “We-Make-It, Inc.” manufacture a copy of the part for them. The produced part is NOT a COTS item, because it is not commonly carried as part of the standard stock of We-Make-It, Inc.
Example 3: A team obtains openly available design drawings from a professional publication during the pre-season, and uses them to fabricate a gearbox for their ROBOT during the build period following Kickoff. The design drawings are considered a COTS item, and may be used as “raw material” to fabricate the gearbox. The finished gearbox itself would be a FABRICATED ITEM, and not a COTS item.

Example 4: A COTS part that has non-functional label markings added would still be considered a COTS part, but a COTS part that has device-specific mounting holes added is a FABRICATED ITEM.

Example 5: A team has a COTS single-board processor version 1.0, which can no longer be purchased. Only the COTS single-board processor version 2.0 may be purchased. If the COTS single-board processor version 1.0 is functionally equivalent to its original condition, it may be used.

Example 6: A team has a COTS gearbox which has been discontinued. If the COTS gearbox is functionally equivalent to its original condition, it may be used.

A VENDOR is a legitimate business source for COTS items that satisfies all the following criteria:

A. has a Federal Tax Identification number. In cases where the VENDOR is outside of the United States, they must possess an equivalent form of registration or license with the government of their home nation that establishes and validates their status as a legitimate business licensed to operate within that country.

B. is not a “wholly owned subsidiary” of a FIRST Robotics Competition team or collection of teams. While there may be some individuals affiliated with both a team and the VENDOR, the business and activities of the team and VENDOR must be completely separable.

C. must be able to ship any general (i.e., non-FIRST unique) product within five business days of receiving a valid purchase request. It is recognized that certain unusual circumstances (such as 1,000 FIRST teams all ordering the same part at once from the same VENDOR) may cause atypical delays in shipping due to backorders for even the largest VENDORS. Such delays due to higher-than-normal order rates are excused.

D. should maintain sufficient stock or production capability to fill teams’ orders within a reasonable period during the season (less than 1 week). (Note that this criterion may not apply to custom-built items from a source that is both a VENDOR and a fabricator. For example, a VENDOR may sell flexible belting that the team wishes to procure to use as treads on their drive system. The VENDOR cuts the belting to a custom length from standard shelf stock that is typically available, welds it into a loop to make a tread, and ships it to a team. The fabrication of the tread takes the VENDOR two weeks. This would be considered a FABRICATED ITEM, and the two-week ship time is acceptable.) Alternately, the team may decide to fabricate the treads themselves. To satisfy this criterion, the VENDOR would just have to ship a length of belting from shelf stock (i.e. a COTS item) to the team within five business days and leave the welding of the cuts to the team.

E. makes their products available to all FIRST Robotics Competition teams. A VENDOR must not limit supply or make a product available to just a limited number of FIRST Robotics Competition teams.

The intent of this definition it to be as inclusive as possible to permit access to all legitimate sources, while preventing ad hoc organizations from providing special-purpose products to a limited subset of teams in an attempt to circumvent the cost accounting rules.
First desires to permit teams to have the broadest choice of legitimate sources possible, and to obtain COTS items from the sources that provide them with the best prices and level of service available. Teams also need to protect against long delays in availability of parts that will impact their ability to complete their Robot. The build season is brief, so the Vendor must be able to get their product, particularly First unique items, to a team in a timely manner.

Ideally, chosen Vendors should have national distributors (e.g. Home Depot, Lowes, MSC, McMaster-Carr, etc.). Remember, First Robotics Competition events are not always near home – when parts fail, local access to replacement materials is often critical.

A fabricated item is any component or mechanism that has been altered, built, cast, constructed, concocted, created, cut, heat treated, machined, manufactured, modified, painted, produced, surface coated, or conjured partially or completely into the final form in which it will be used on the Robot.

Note that it is possible for an item (typically raw materials) to be neither COTS nor a fabricated item. For example, a 20 ft. (~610 cm) length of aluminum which has been cut into 5 ft. (~152 cm) pieces by the team for storage or transport is neither COTS (it’s not in the state received from the Vendor), nor a fabricated item (the cuts were not made to advance the part towards its final form on the ROBOT).

Teams may be asked to provide documentation proving legality of non-2020 or 2021 KOP items during Inspection where a rule specifies limits for a legal part (e.g. pneumatic items, current limits, COTS electronics, etc.).

Some of these rules make use of English unit requirements for parts. If your team has a question about a metric-equivalent part's legality, please e-mail your question to frcparts@firstinspires.org for an official ruling. To seek approval for alternate devices for inclusion in future First Robotics Competition seasons, please contact frcparts@firstinspires.org with item specifications.

Teams should acknowledge the support provided by the corporate Sponsors and mentors with an appropriate display of their school and Sponsors names and/or logos (or the name of the supporting youth organization, if appropriate).

First Robotics Competition can be a full-contact competition and may include rigorous game play. While the rules aim to limit severe damage to Robots, teams should design their Robots to be robust.

9.2 General ROBOT Design

R1. The Robot (excluding bumpers) must have a frame perimeter, contained within the bumper zone and established while in the Robot’s starting configuration, that is comprised of fixed, non-articulated structural elements of the Robot. Minor protrusions no greater than ¼ in. (~6 mm) such as bolt heads, fastener ends, weld beads, and rivets are not considered part of the frame perimeter.

To determine the frame perimeter, wrap a piece of string around the Robot (excluding bumpers) at the bumper zone described in R18 and pull it taut. The string outlines the frame perimeter.

Example: A Robot’s chassis is shaped like the letter ‘V’, with a large gap between chassis elements on the front of the Robot. When wrapping a taut string around this...
chassis, the string extends across the gap and the resulting FRAME PERIMETER is a triangle with three sides.

R2. In the STARTING CONFIGURATION (the physical configuration in which a ROBOT starts a MATCH), no part of the ROBOT shall extend outside the vertical projection of the FRAME PERIMETER, with the exception of its BUMPERS and minor protrusions such as bolt heads, fastener ends, rivets, cable ties, etc.

If a ROBOT is designed as intended and each side is pushed up against a vertical wall (in STARTING CONFIGURATION and with BUMPERS removed), only the FRAME PERIMETER (or minor protrusions) will be in contact with the wall.

The allowance for minor protrusions in R2 is intended to allow protrusions that are both minor in extension from the FRAME PERIMETER and cross-sectional area.

If a ROBOT uses interchangeable MECHANISMS per I3, Teams should be prepared to show compliance with R2 and R4 in all configurations.

R3. A ROBOT’S STARTING CONFIGURATION may not have a FRAME PERIMETER greater than 120 in. (~304 cm) and may not be more than 45 in. (~114 cm) tall.

Be sure to consider the size of the ROBOT on its cart to make sure it will fit through doors. Also consider the size of the ROBOT to ensure that it will fit into a shipping crate, vehicle, etc.

Note that the BUMPER Rules contained in BUMPER Rules may impose additional restrictions on ROBOT design.

R4. ROBOTS may not extend more than 12 in. (~30 cm) beyond their FRAME PERIMETER (see Figure 9-1).

![Figure 9-1 FRAME PERIMETER extension](image)

Expect to have to demonstrate a ROBOT’S ability to constrain itself per above during Inspection. Constraints may be implemented with either hardware or software.
R5. The ROBOT weight must not exceed 125 lbs. (~56 kg). When determining weight, the basic ROBOT structure and all elements of all additional MECHANISMS that might be used in a single configuration of the ROBOT shall be weighed together (see I3).

For the purposes of determining compliance with the weight limitations, the following items are excluded:

A. ROBOT BUMPERS

B. ROBOT battery and its associated half of the Anderson cable quick connect/disconnect pair (including no more than 12 in. (~30 cm) of cable per leg, the associated cable lugs, connecting bolts, and insulation)

C. tags used for location detection systems if provided by the event

9.3 ROBOT Safety & Damage Prevention

R6. Traction devices must not have surface features that could damage the ARENA (e.g. metal, sandpaper, hard plastic studs, cleats, hook-loop fasteners or similar attachments). Traction devices include all parts of the ROBOT that are designed to transmit any propulsive and/or braking forces between the ROBOT and FIELD carpet.

R7. Protrusions from the ROBOT and exposed surfaces on the ROBOT shall not pose hazards to the ARENA elements (including the POWER CELLS) or people.

R8. ROBOT parts shall not be made from hazardous materials, be unsafe, cause an unsafe condition, or interfere with the operation of other ROBOTS.

Examples of items that will violate R8 include (but are not limited to):

a. Shields, curtains, or any other devices or materials designed or used to obstruct or limit the vision of any DRIVERS and/or COACHES and/or interfere with their ability to safely control their ROBOT

b. Speakers, sirens, air horns, or other audio devices that generate sound at a level sufficient to be a distraction

c. Any devices or decorations specifically intended to jam or interfere with the remote sensing capabilities of another ROBOT, including vision systems, acoustic range finders, sonars, infrared proximity detectors, etc. (e.g. including imagery on your ROBOT that, to a reasonably astute observer, mimics the retro-reflective features of vision targets described in Vision Targets)

d. Exposed lasers other than Class I.

e. Flammable gasses

f. Any device intended to produce flames or pyrotechnics

g. Hydraulic fluids or hydraulic items

h. Switches or contacts containing liquid mercury

i. Circuitry used to create voltages in excess of 24 Volts

j. Any ballast not secured sufficiently, including loose ballast e.g. sand, ball bearings, etc., such that it may become loose during a MATCH

k. Exposed, untreated hazardous materials (e.g. lead weights) used on the ROBOT. These materials may be permitted if painted, encapsulated or otherwise sealed to prevent contact. These materials may not be machined in any way at an event.

l. Tire sealant
m. High intensity light sources used on the ROBOT (e.g. super bright LED sources marketed as 'military grade' or 'self-defense') may only be illuminated for a brief time while targeting and may need to be shrouded to prevent any exposure to participants. Complaints about the use of such light sources will be followed by re-inspection and possible disablement of the device. Teams should provide MSD Sheets for any materials they use that might be considered questionable during ROBOT Inspection.

R9. ROBOTS must allow removal of game pieces from the ROBOT and the ROBOT from FIELD elements while DISABLED and powered off.

ROBOTS will not be re-enabled after the MATCH, so teams must be sure that game pieces and ROBOTS can be quickly, simply, and safely removed.

Teams are encouraged to consider rule C7 when developing their ROBOTS.

R10. Lubricants may be used only to reduce friction within the ROBOT. Lubricants must not contaminate the FIELD or other ROBOTS.

9.4 Budget Constraints & Fabrication Schedule

R11. This rule has been removed for the 2021 season.

R12. No individual, non-KOP item or software used on the ROBOT shall have a Fair Market Value that exceeds $500 USD. The total cost of COMPONENTS purchased in bulk may exceed $500 USD as long as the cost of an individual COMPONENT does not exceed $500 USD.

Teams should be ready to show inspectors documentation of Fair Market Value (FMV) for any COMPONENTS that appear to be in the range of the $500 USD limit.

The Analog Devices ADIS16448 IMU MXP Breakout Board does not have a published FMV. This device is considered to comply with R12 regardless of its true FMV.

The FMV of a COTS item is its price defined by a VENDOR for the part or an identical functional replacement. This price must be generally available to all FIRST Robotics Competition teams throughout the build and competition season (i.e. short-term sale prices or coupons do not reflect FMV), however teams are only expected to make a good faith effort at determining the item price and are not expected to monitor prices of ROBOT items throughout the season. The FMV is the cost of the item itself and does not include any duties, taxes, tariffs, shipping, or other costs that may vary by locality.

The FMV of COTS software is the price, set by the VENDOR, to license the software (or component of the software) that runs on the ROBOT for the period from Kickoff to the end of the FIRST Championship. The FMV of software licensed free-of-cost, including through the Virtual KOP, for use on the ROBOT is $0.

The FMV of FABRICATED parts is the value of the material and/or labor, except for labor provided by team members (including sponsor employees who are members of the team), members of other teams, and/or event provided Machine Shops. Material costs are accounted for as the cost of any purchasable quantity that can be used to make the individual part (i.e. the purchasable raw material is larger than the FABRICATED part).

Example 1: A team orders a custom bracket made by a company to the team’s specification. The company’s material cost and normally charged labor rate apply.
Example 2: A team receives a donated sensor. The company would normally sell this item for $450 USD, which is therefore its FMV.

Example 3: A team purchases titanium tube stock for $400 USD and has it machined by a local machine shop. The machine shop is not considered a team Sponsor but donates two (2) hours of expended labor anyway. The team must include the estimated normal cost of the labor as if it were paid to the machine shop and add it to the $400 USD.

Example 4: A team purchases titanium tube stock for $400 USD and has it machined by a local machine shop that is a recognized Sponsor of the team. If the machinists are considered members of the team, their labor costs do not apply. The total applicable cost for the part would be $400 USD.

It is in the best interests of the teams and FIRST to form relationships with as many organizations as possible. Teams are encouraged to be expansive in recruiting and including organizations in their team, as that exposes more people and organizations to FIRST. Recognizing supporting companies as Sponsors of, and members in, the team is encouraged, even if the involvement of the Sponsor is solely through the donation of fabrication labor.

Example 5: A team purchases titanium tube stock for $400 USD and has it machined by another team. The total applicable cost for the part would be $400 USD.

Example 6: A team purchases a widget at a garage sale or online auction for $300, but it’s available for sale from a VENDOR for $700. The FMV is $700.

If a COTS item is part of a modular system that can be assembled in several possible configurations, then each individual module must fit within the price constraints defined in R12.

If the modules are designed to assemble into a single configuration, and the assembly is functional in only that configuration, then the total cost of the complete assembly including all modules must fit within the price constraints defined in R12.

In summary, if a VENDOR sells a system or a kit, a team must use the entire system/kit FMV and not the value of its COMPONENT pieces.

Example 1: VENDOR A sells a gearbox that can be used with a number of different gear sets, and can mate with two different motors they sell. A team purchases the gearbox, a gear set, and a motor, then assembles them together. Each part is treated separately for the purpose of determining FMV, since the purchased pieces can each be used in various configurations.

Example 2: VENDOR B sells a robotic arm assembly that the team wants to use. However, it costs $700 USD, so they cannot use it. The VENDOR sells the “hand”, “wrist”, and “arm” as separate assemblies, for $200 USD each. A team wishes to purchase the three items separately, then reassemble them. This would not be legal, as they are really buying and using the entire assembly, which has a FMV of $700 USD.

Example 3: VENDOR C sells a set of wheels or wheel modules that are often used in groups of four. The wheels or modules can be used in other quantities or configurations. A team purchases four and uses them in the most common configuration. Each part is treated separately for the purpose of determining FMV, since the purchased pieces can be used in various configurations.

R13. This rule has been removed for the 2021 season.
R14. This rule has been removed for the 2021 season.

R15. This rule has been removed for the 2021 season.

R16. During an event a team is attending (regardless of whether the team is physically at the event location), the team may neither work on nor practice with their ROBOT or ROBOT elements outside of the hours that pits are open, with the following exceptions:

A. OPERATOR CONSOLE,
B. BUMPERS (a protective assembly designed to attach to the exterior of the ROBOT and constructed as specified in BUMPER Rules),
C. battery assemblies as described in R5-B,
D. FABRICATED ITEMS consisting of one COTS electrical device (e.g. a motor or motor controller) and attached COMPONENTS associated with any of the following modifications:
 i. wires modified to facilitate connection to a ROBOT (including removal of existing connectors)
 ii. connectors and any materials to secure and insulate those connectors added (Note: passive PCBs such as those used to adapt motor terminals to connectors are considered connectors)
 iii. motor shafts modified and/or gears, pulleys, or sprockets added
 iv. motors modified with a filtering capacitor as described in the Blue Box below R5
E. COTS items with any of the following modifications:
 i. Non-functional decoration or labeling
 ii. Assembly of COTS items per manufacturer specs, unless the result constitutes a MAJOR MECHANISM as defined in I1
F. Software development
G. Batteries may be charged during the designated Load-in time

For the purposes of this rule, official events begin at the start of the first designated Load-in period, according to the Public Schedule. If the Public Schedule is not available or the Public Schedule does not include a Load-in period, the event begins at 6 AM local time. Examples of activity prohibited by R16 include:

a. Working on the ROBOT at the team’s shop after Load-in for the event has begun
b. Working on ROBOT parts at night at the team’s hotel.

Note that E8 and E20 impose additional restrictions on work done on the ROBOT or ROBOT materials while attending an event.

One purpose of R16 is to increase equity between teams with significant travel to an event and those nearby (close teams would otherwise have an advantage by being able to work on their ROBOT, in their shop, until it’s time to go to the event).

9.5 BUMPER Rules

A BUMPER is a required assembly which attaches to the ROBOT frame. BUMPERS protect ROBOTS from damaging/being damaged by other ROBOTS and FIELD elements. Criteria used in writing these rules includes the following:

- Minimize variety of BUMPERS so teams can expect consistency
- Minimize the amount of design challenge in creating BUMPERS
- Minimize cost of BUMPER materials
- Maximize use of relatively ubiquitous materials
R17. ROBOTS are required to use BUMPERS to protect all outside corners of the FRAME PERIMETER. For adequate protection, at least 6 in. (~16 cm) of BUMPER must be placed on each side of each outside corner (see Figure 9-2 BUMPER corner examples) and must extend to within ¼ in. (~6 mm) of the FRAME PERIMETER corner. If a FRAME PERIMETER side is shorter than 12 in. (~31 cm), that entire side must be protected by BUMPER (see Figure 9-3). A round or circular FRAME PERIMETER, or segment of the FRAME PERIMETER, is considered to have an infinite number of corners, therefore the entire frame or frame segment must be completely protected by BUMPER(S).

The dimension defined in R17 is measured along the FRAME PERIMETER. The portion of the BUMPER that extends beyond the corner of the FRAME PERIMETER is not included in the 6 in. (~16 cm) requirement. See Figure 9-2.

Figure 9-2 BUMPER corner examples
R18. Except as allowed per G16, BUMPERS must be located entirely within the BUMPER ZONE, which is the volume contained between the floor and a virtual horizontal plane 7½ in. (~19 cm) above the floor in reference to the ROBOT standing normally on a flat floor. BUMPERS do not have to be parallel to the floor.

This measurement is intended to be made as if the ROBOT is resting on a flat floor (without changing the ROBOT configuration), not relative to the height of the ROBOT from the FIELD carpet. Examples include:

Example 1: A ROBOT that is at an angle while navigating the FIELD has its BUMPERS outside the BUMPER ZONE. If this ROBOT were virtually transposed onto a flat floor, and its BUMPERS are in the BUMPER ZONE, it meets the requirements of R18.

Example 2: A ROBOT deploys a MECHANISM which lifts the BUMPERS outside the BUMPER ZONE (when virtually transposed onto a flat floor). This violates R18.

R19. BUMPERS must not be articulated (relative to the FRAME PERIMETER).

R20. BUMPERS (the entire BUMPER, not just the cover) must be designed for quick and easy installation and removal to facilitate Inspection and weighing.

As a guideline, BUMPERS should be able to be installed or removed by two (2) people in fewer than five (5) minutes.

R21. Each ROBOT must be able to display primarily Red or Blue BUMPERS to MATCH their ALLIANCE color, as assigned in the MATCH schedule distributed at the event (as described in MATCH Schedules). A BUMPER is considered primarily Red or Blue if all displayed BUMPER surfaces other than corners (i.e. everywhere the BUMPER is backed by the FRAME PERIMETER) displays the appropriate color. Any visible fabric other than the primary color must be a solid color. See Figure 9-4. BUMPER Markings visible when installed on the ROBOT, other than the following, are prohibited:
A. those required per R22,
B. hook-and-loop fastener or snap fasteners backed by the hard parts of the BUMPER, and
C. solid white FIRST logos between 4¾ in. (~12 cm) and 5¼ in. wide (~13 cm) (i.e. comparable to those available in the 2021 Virtual Kit.

The FRAME PERIMETER facing surfaces and short perpendicular “ends” of BUMPERS are not “displayed” and thus R21 does not apply.

R22. Team numbers must be displayed and positioned on the BUMPERS such that an observer walking around the perimeter of the ROBOT can unambiguously tell the team’s number from any point of view and meet the following additional criteria:

A. consist of only Arabic numerals at least 4 in. (~11 cm) high, at least ½ in. (~13 mm) in stroke width, and be either white in color or outlined in white with a minimum 1/16 in. (~2 mm) outline.

The ½ in. (~13 mm) stroke width requirement applies to the majority of the stroke. Font elements less than ½ in. (~13 mm) such as serifs, rounded edges, small hairlines or gaps, etc. are permitted as long as the majority of the stroke meets the sizing requirement and the numbers are unambiguous.

B. must not wrap around sharp corners (less than 160 degrees) of the FRAME PERIMETER
C. may not substitute logos or icons for numerals

There is no prohibition against splitting team numbers onto different sections of BUMPER. The intent is that the team’s number is clearly visible and unambiguous so that Judges, REFEREES, Announcers, and other teams can easily identify competing ROBOTS.
This marking is intended to display the team number only, not to intentionally change the
surface characteristics of the BUMPER. Excessive material usage as part of any team
number marking will invite close scrutiny.

R23. Each set of BUMPERS (including any fasteners and/or structures that attach them to the
ROBOT) must weigh no more than 15 lbs. (~6 kg).

If a multi-part attachment system is utilized (e.g. interlocking brackets on the ROBOT and
the BUMPER), then the elements permanently attached to the ROBOT will be considered
part of the ROBOT, and the elements attached to the BUMPERS will be considered part
of the BUMPER. Each element must satisfy all applicable rules for the relevant system.

R24. BUMPERS must be constructed as follows (see Figure 9-7):

A. be backed by ¾ in. (nominal) thick (~19mm) by 5 in. ± ½ in. (~127 mm ± 12.7 mm) tall
plywood, Oriented Strand Board (OSB) or solid wood (with the exception of balsa). Small
clearance pockets and/or access holes in the wood backing are permitted, as long as they
do not significantly affect the structural integrity of the BUMPER.

¾ in. Plywood and OSB refer to items sold by VENDORS as that material and thickness,
teams may not fabricate their own plywood or OSB. Other engineered woods such as
Fiberboard or Particle Board are not likely to survive the rigors of FIRST Robotics
Competition gameplay and thus not permitted in R24-A.

Note: ¾ in. plywood is now often marked according to the actual dimension (²³⁄₃₂ in.) not
the nominal size. Plywood sold as ²³⁄₃₂ in. meets the requirements of R24-A.

B. hard BUMPER parts allowed per R24-A, -E, -F, and -G must not extend more than 1 in.
(~25 mm) beyond the FRAME PERIMETER (measured as shown in Figure 9-5).

![Figure 9-5 Hard parts of BUMPER corners](image-url)
C. use a stacked pair of approximately 2½ in. (nominal, ~63mm) round, petal, or hex “pool noodles” (solid or hollow) as the BUMPER cushion material (see Figure 9-7). All pool noodles used in a BUMPER set (e.g. Red set of BUMPERS) may not be modified (with the exception of cutting to length or cutting to facilitate mating pool noodles at the corners as required by R25) or deformed and must be the same diameter, cross-section, and density (e.g. all round hollow or all hex solid). Cushion material may extend up to 2½ in. (~63 mm) beyond the end of the plywood (see Figure 9-8). To assist in applying the fabric covering, soft fasteners may be used to attach the pool noodles to the wood backing, so long as the cross section in Figure 9-7 is not significantly altered (e.g. tape compressing the pool noodles).

All pool noodles used on a ROBOT must be the same in order to maintain the desired interaction between ROBOTS in the cases of BUMPER-to-BUMPER contact. BUMPERS containing pool noodles of vastly different construction may cause a “ramp” effect when interacting with other BUMPERS.

Minor noodle compression as a result of smoothing BUMPER fabric or rounding a FRAME PERIMETER corner is not considered deformed. Any compression beyond that, e.g. for the purposes of flattening the noodle, is deformation and a violation of R24-C.

D. be covered with a rugged, smooth cloth. (multiple layers of cloth and seams are permitted if needed to accommodate R21 and/or R22, provided the cross section in Figure 9-7 is not significantly altered).

Silk and bedding are not considered rugged cloths, however 1000D Cordura is. Tape (e.g. gaffer’s tape) matching the BUMPER color is allowed to patch small holes on a temporary basis.

It is expected that there may be multiple layers of cloth as fabric is folded to accommodate the corners and seams of BUMPERS.

The cloth must completely enclose all exterior surfaces of the wood and pool noodle material when the BUMPER is installed on the ROBOT. The fabric covering the BUMPERS must be solid in color.

BUMPER corners and “ends”, shown in Figure 9-4, must be solid in color, but do not need to be the same color as the rest of the BUMPER, as described in R21.

E. optionally use metal angle, as shown in Figure 9-7 or other fasteners (e.g. staples, screws, adhesives, etc.) to clamp cloth.

F. optionally use metal brackets (i.e. angle or sheet metal) or other fasteners (e.g. staples, screws, adhesives, etc.) to attach BUMPER segments to each other (see Figure 9-6).
G. must attach to the FRAME PERIMETER of the ROBOT with a rigid fastening system to form a tight, robust connection to the main structure/frame (e.g. not attached with hook-and-loop, tape, or tie-wraps). The attachment system must be designed to withstand vigorous game play. All removable fasteners (e.g. bolts, locking pins, pip-pins, etc.) will be considered part of the BUMPERS.

![Diagram showing the attachment system](image)

Figure 9-7 BUMPER vertical cross section

R25. Corner joints between BUMPERS must be filled with pool noodle material. Examples of implementation are shown in Figure 9-8.

![Examples of bumper corner implementation](image)

Figure 9-8 Soft parts of BUMPER corners
R26. BUMPERS must be supported by the structure/frame of the ROBOT (see Figure 9-9). To be considered supported, a minimum of ½ in. (~13 mm) at each end of each BUMPER wood segment must be backed by the FRAME PERIMETER (≤¼ in. gap, ~6 mm). “Ends” exclude hard BUMPER parts which extend past the FRAME PERIMETER permitted by R24-B. Additionally, any gap between the backing material and the frame:

- A. must not be greater than ¼ in. (~6 mm) deep, or
- B. not more than 8 in. (~20 cm) wide

The intent of this rule is to make sure the BUMPER wood is properly supported to minimize the likelihood of breakage on impact. Flexible ROBOT elements, such as thin plastic, do not accomplish this intent and are not considered “structure/frame” of the ROBOT.
9.6 Motors & Actuators

R27. The only motors and actuators permitted on 2021 ROBOTS include the following (in any quantity):

Table 9-1 Motor allowances

<table>
<thead>
<tr>
<th>Motor Name</th>
<th>Part Numbers Available</th>
</tr>
</thead>
<tbody>
<tr>
<td>AndyMark 9015</td>
<td>am-0912 AndyMark 9015</td>
</tr>
<tr>
<td>AndyMark NeveRest</td>
<td>am-3104 AndyMark NeveRest</td>
</tr>
<tr>
<td>AndyMark PG</td>
<td>am-2161 (alt. PN am-2765) am-2194 (alt. PN am-2766)</td>
</tr>
<tr>
<td>AndyMark RedLine Motor</td>
<td>am-3775 am-3775a</td>
</tr>
<tr>
<td>AndyMark Snow Blower Motor</td>
<td>am-2235 am-2235a</td>
</tr>
<tr>
<td>Banebots</td>
<td>am-3830 M7-RS775-18 RS775WC-8514 M5 – RS550-12 RS550VC-7527 RS550</td>
</tr>
<tr>
<td>CIM</td>
<td>FR801-001 M4-R0062-12 AM802-001A 217-2000 PM25R-44F-1005 PM25R-45F-1004 PM25R-45F-1003 PMR25R-45F-1005 pm-0255</td>
</tr>
<tr>
<td>CTR Electronics/VEX Robotics Falcon 500</td>
<td>217-6515 am-6515 19-708850 am-6515_Short</td>
</tr>
<tr>
<td>Current/former KOP Automotive motors</td>
<td>Denso AE235100-0160 Denso 5-163800-RC1 Denso 262100-3030 Bosch 6 004 RA3 194-06 Johnson Electric JE-PLG-149</td>
</tr>
<tr>
<td>Nidec Dynamo BLDC Motor</td>
<td>am-3740 DM3012-1063</td>
</tr>
<tr>
<td>Playing with Fusion Venom</td>
<td>BDC-10001</td>
</tr>
<tr>
<td>REV Robotics HD Hex Motor</td>
<td>REV-41-1291</td>
</tr>
<tr>
<td>REV Robotics NEO Brushless</td>
<td>REV-21-1650</td>
</tr>
<tr>
<td>REV Robotics NEO 550</td>
<td>REV-21-1651</td>
</tr>
<tr>
<td>VEX BAG</td>
<td>217-3351</td>
</tr>
<tr>
<td>VEX Mini-CIM</td>
<td>217-3371</td>
</tr>
<tr>
<td>West Coast Products RS775 Pro</td>
<td>217-4347</td>
</tr>
</tbody>
</table>

Electrical solenoid actuators, no greater than 1 in. (nominal) stroke and rated electrical input power no greater than 10 watts (W) continuous duty at 12 volts (VDC)

Fans, no greater than 120mm (nominal) size and rated electrical input power no greater than 10 watts (W) continuous duty at 12 volts (VDC)

Hard drive motors part of a legal COTS computing device

Factory installed vibration and autofocus motors resident in COTS computing devices (e.g. rumble motor in a smartphone).

PWM COTS servos with a retail cost < $75.

Motors integral to a COTS sensor (e.g. LIDAR, scanning sonar, etc.), provided the device is not modified except to facilitate mounting

One (1) compressor compliant with R79 and used to compress air for the ROBOT’S pneumatic system

For servos, note that the roboRIO is limited to a max current output of 2.2A on the 6V rail (12.4W of electrical input power). Teams should make sure that their total servo power usage remains below this limit at all times.

Given the extensive amount of motors allowed on the ROBOT, teams are encouraged to consider the total power available from the ROBOT battery during the design and build of
2021 FIRST Robotics Competition

the ROBOT. Drawing large amounts of current from many motors at the same time could lead to drops in ROBOT battery voltage that may result in tripping the main breaker or trigger the brownout protection of the roboRIO. For more information about the roboRIO brownout protection and measuring current draw using the PDP, see roboRIO Brownout and Understanding Current Draw.

AndyMark PG Gearmotors are sold with labeling based on the entire assembly. Assemblies labeled am-3651 through am-3656 contain legal motors specified in the table above. These motors may be used with or without the provided gearbox.

R28. The integral mechanical and electrical system of any motor must not be modified. Motors, servos, and electric solenoids used on the ROBOT shall not be modified in any way, except as follows:

A. The mounting brackets and/or output shaft/interface may be modified to facilitate the physical connection of the motor to the ROBOT and actuated part.
B. The electrical leads may be trimmed to length as necessary and connectors or splices to additional wiring may be added.
C. The locking pins on the window motors (P/N: 262100-3030 and 262100-3040) may be removed.
D. The connector housings on KOP Automotive motors listed in Table 9-1 may be modified to facilitate lead connections.
E. Servos may be modified as specified by the manufacturer (e.g. re-programming or modification for continuous rotation).
F. The wiring harness of the Nidec Dynamo BLDC Motor may be modified as documented by FIRST in the “Nidec Dynamo BLDC Motor with Controller” article.
G. Minimal labeling applied to indicate device purpose, connectivity, functional performance, etc.
H. Any number of #10-32 plug screws may be removed from the Falcon 500.
I. Insulation may be applied to electrical terminals.

The intent of this rule is to allow teams to modify mounting tabs and the like, not to gain a weight reduction by potentially compromising the structural integrity of any motor.

R29. With the exception of servos, fans, or motors integral to sensors of COTS computing devices permitted in R27, each actuator must be controlled by a power regulating device. The only power regulating devices for actuators permitted on the ROBOT include:

A. Motor Controllers
 i. DMC 60/DMC 60c Motor Controller (P/N: 410-334-1, 410-334-2)
 ii. Jaguar Motor Controller (P/N: MDL-BDC, MDL-BDC24, and 217-3367) connected to PWM only
 iii. Nidec Dynamo BLDC Motor with Controller to control integral actuator only (P/N 840205-000, am-3740)
 iv. SD540 Motor Controller (P/N: SD540x1, SD540x2, SD540x4, SD540Bx1, SD540Bx2, SD540Bx4, SD540C)
 v. Spark Motor Controller (P/N: REV-11-1200)
 vi. Spark MAX Motor Controller (P/N: REV-11-2158)
 vii. Talon FX Motor Controller (P/N: 217-6515, 19-708850, am-6515, am-6515_Short) for controlling integral Falcon 500 only
 viii. Talon Motor Controller (P/N: CTRE_Talon, CTRE_Talon_SR, and am-2195)
 ix. Talon SRX Motor Controller (P/N: 217-8080, am-2854, 14-838288)
 x. Venom Motor with Controller (P/N: BDC-10001) for controlling integral motor only
xi. Victor 884 Motor Controller (P/N: VICTOR-884-12/12)

xii. Victor 888 Motor Controller (P/N: 217-2769)

xiii. Victor SP Motor Controller (P/N: 217-9090, am-2855, 14-868380)

B. Relay Modules

i. Spike H-Bridge Relay (P/N: 217-0220 and SPIKE-RELAY-H)

C. Pneumatics controllers

i. Pneumatics Control Module (P/N: am-2858, 217-4243)

Note: The Automation Direct Relays are single directional. Per R30 they may not be wired together in an attempt to provide bi-directional control.

R30. Each power regulating device may control electrical loads per Table 9-2. Unless otherwise noted, each power regulating device shall control one and only one electrical load.

Table 9-2 Power regulating device allotments

<table>
<thead>
<tr>
<th>Electrical Load</th>
<th>Motor Controller</th>
<th>Relay Module</th>
<th>Pneumatics Controller</th>
</tr>
</thead>
<tbody>
<tr>
<td>AndyMark RedLine Motor Banebots CIM</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>REV Robotics NEO Brushless REV Robotics NEO 550</td>
<td>Yes (up to 2 per controller)</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>VEX Mini-CIM WCP RS775 Pro</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>AndyMark 9015 VEXpro BAG</td>
<td>Yes (up to 2 per controller)</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>AndyMark PG KOP Automotive Motors NeverRest Snow Blower Motor</td>
<td>Yes (up to 2 per controller)</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>CTR Electronics/VEX Falcon 500 Nidec Dynamo BLDC Motor w/ Controller Playing With Fusion Venom</td>
<td>Yes (integrated controller only)</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Compressor</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Pneumatic Solenoid Valves</td>
<td>No</td>
<td>Yes(^1)</td>
<td>Yes(^1) (1 per channel)</td>
</tr>
<tr>
<td>Electric Solenoids</td>
<td>Yes(^1)</td>
<td>Yes(^1)</td>
<td>Yes(^1) (1 per channel)</td>
</tr>
<tr>
<td>CUSTOM CIRCUITS(^2)</td>
<td>Yes(^1)</td>
<td>Yes(^1)</td>
<td>Yes(^1) (1 per channel)</td>
</tr>
</tbody>
</table>
1 Multiple low-load, pneumatic solenoid valves (relay only), electric solenoids or CUSTOM CIRCUITS may be connected to a single relay module or motor controller. This would allow one (1) relay module or motor controller to drive multiple pneumatic actions or multiple CUSTOM CIRCUITS. No other electrical load can be connected to a relay module used in this manner.

2 A CUSTOM CIRCUIT is any electrical COMPONENT of the ROBOT other than motors, pneumatic solenoids, roboRIO, PDP, PCM, VRM, RSL, 120A breaker, motor controllers, relay modules (per R29-B), wireless bridge, electrical solenoid actuators, or batteries.

R31. Servos must be connected to, and only to, one of the following:
 A. PWM PORTS on the roboRIO
 B. PWM PORTS on a WCP Spartan Sensor Board (P/N: WCP-0045)
 C. REV Robotics Servo Power Module (P/N: REV-11-1144)

9.7 Power Distribution

In order to maintain safety, the rules in this section apply at all times while at the event, not just while the ROBOT is on the FIELD for MATCHES.

R32. The only legal source of electrical energy for the ROBOT during the competition, the ROBOT battery, must be one and only one non-spillable sealed lead acid (SLA) battery with the following specifications:
 A. Nominal voltage: 12V
 B. Nominal capacity at 20-hour discharge rate: minimum 17Ah, maximum 18.2Ah
 C. Shape: Rectangular
 D. Nominal Dimensions: 7.1 in. x 3 in. x 6.6 in., +/- .1 in. for each dimension (~ 180 mm x 76mm x 168 mm, +/- 2.5 mm for each dimension)
 E. Nominal weight: 11lbs. to 14.5 lbs. (~5 kg. to 6.5 kg.)
 F. Terminals: Nut and bolt style

Examples of batteries which meet these criteria include:
 a. Enersys (P/N: NP18-12, NP18-12B, NP18-12BFR)
 b. MK Battery (P/N: ES17-12)
 c. Battery Mart (P/N: SLA-12V18)
 d. Sigma (P/N: SP12-18)
 e. Universal Battery (P/N: UB12180)
 f. Power Patrol (P/N: SLA1116)
 g. Werker Battery (P/N: WKA12-18NB)
 h. Power Sonic (P/N: PS-12180NB)
 i. Yuasa (P/N: NP18-12B)
 j. Panasonic (P/N: LC-RD-1217)
 k. Interstate Batteries (P/N: BSL1116)
 l. Duracell Ultra Battery (P/N: DURA12-18NB)

Teams should be aware that they may be asked to provide documentation of the specifications of any battery not listed above.

Batteries should be charged in accordance with manufacturer’s specification. (Please see the FIRST Safety Manual for additional information.)

R33. COTS USB battery packs with a capacity of 100Wh or less (20000mAh at 5V) and 2.5 Amp max output per port, or batteries integral to and part of a COTS computing device or self-contained
camera (e.g. laptop batteries, GoPro style camera, etc.) may be used to power COTS computing devices and any peripheral COTS input or output devices connected to the COTS computing device provided they are:

A. securely fastened to the ROBOT,
B. connected only using unmodified COTS cables, and
C. charged according to manufacturer recommendations.

R34. Any battery charger used to charge a ROBOT battery must have the corresponding Anderson SB connector installed.

R35. Any battery charger used to charge a ROBOT battery may not be used such that it exceeds 6-Amp peak charge current.

R36. No batteries other than those allowed per R32 and R33 are allowed on the ROBOT, whether or not they are being used to supply power.

For example, teams may not use additional batteries as extra weight on their ROBOTS.

R37. The ROBOT battery must be secured such that it will not dislodge during vigorous ROBOT interaction including if the ROBOT is turned over or placed in any arbitrary orientation.

R38. Each electrical terminal on the ROBOT battery, main breaker, and their connections (lugs, stripped wire ends, etc.) to the wire must be fully insulated at all times.

R39. Non-electrical sources of energy used by the ROBOT, (i.e., stored at the start of a MATCH), shall come only from the following sources:

A. compressed air stored in the pneumatic system that has been charged in compliance with R79 and R80,
B. a change in the altitude of the ROBOT center of gravity,
C. storage achieved by deformation of ROBOT parts,
D. closed-loop COTS pneumatic (gas) shocks, and
E. air-filled (pneumatic) wheels.
R40. The one (1) ROBOT battery, a single pair of Anderson Power Products (or APP) 2-pole SB type connectors, the one (1) main 120-amp (120A) surface mount circuit breaker (Cooper Bussman P/N: CB185-120, CB185F-120, CB285-120), and the one (1) CTR Electronics Power Distribution Panel (PDP, P/N: am-2856, 217-4244, 14-806880) shall be connected with 6 AWG (7 SWG or 16 mm²) copper wire or larger, with no additional devices or modifications, as shown in Figure 9-10.

Figure 9-10 Electrical connection diagram

“SB type” refers to SB type only (e.g. SB-50, SB-120, etc.), not SBS or any other part type beginning with SB. All batteries supplied by FIRST (such as Spare Parts and international batteries) will have a Red or Pink SB50 connector installed which may not be removed.

The pink connectors included in the 2020 KOP mate with the Red SB50 connector.

R41. All circuits, with the exceptions of those listed in R46 and R48, must connect to, and have power sourced solely by, a single protected 12VDC WAGO connector pair (i.e. the Load Terminals, as shown in Figure 9-10) of the one (1) CTR Electronics Power Distribution Panel, not the M6 cap screws.

R42. All wiring and electrical devices, including all Control System COMPONENTS, shall be electrically isolated from the ROBOT frame. The ROBOT frame must not be used to carry electrical current.

R42 is checked by observing a >3kΩ resistance between either the (+) or (-) post within the APP connector that is attached to the PDP and any point on the ROBOT.

All legal motor controllers with metal cases are electrically isolated. They may be mounted directly to ROBOT frame COMPONENTS.
Note that some cameras, decorative lights and sensors (e.g. some encoders, some IR sensors, etc.) have grounded enclosures or are manufactured with conductive plastics. These devices must be electrically isolated from the ROBOT frame to ensure compliance with R42.

R43. The 120A circuit breaker must be quickly and safely accessible from the exterior of the ROBOT. This is the only 120A circuit breaker allowed on the ROBOT.

Examples considered not “quickly and safely accessible” include breakers covered by an access panel or door, or mounted on, underneath or immediately adjacent to moving COMPONENTS.

It is strongly recommended that the 120A circuit breaker location be clearly and obviously labeled so it can be easily found by FIELD STAFF during a MATCH.

R44. The PDP, associated wiring, and all circuit breakers must be visible for Inspection.

R45. Any active electrical item that is not an actuator (specified in R27) or core Control System item (specified in R66) is considered a CUSTOM CIRCUIT. CUSTOM CIRCUITS shall not produce voltages exceeding 24V.

R46. The roboRIO power input must be connected to the dedicated supply terminals on the PDP shown in Figure 9-11. No other electrical load shall be connected to these terminals.

> Figure 9-11 roboRIO power source

R47. The Wireless Bridge (Radio) power must be supplied directly by the 12V 2A output of a CTR Electronics Voltage Regulator Module (VRM) (P/N: am-2857, 217-4245) and must be the only load connected to those terminals.

> Figure 9-12 Radio power source

Note that this wiring is different from the wiring for the radio used in 2015, but is identical to the wiring from 2016-2020. When using a 2015 VRM with the OM5P-AN or OM5P-AC
radio, the radio should be connected as described above, not to the terminals labeled “Radio”.

Note that this prohibits using any active POE Injector device to power the radio but does not prohibit using any PASSIVE CONDUCTORS to inject the VRM power into an Ethernet cable plugged into the radio port labeled “18-24v POE”.

R48. The VRM supplying power to the Wireless Bridge per R47 must be connected to the designated supply terminals at the end of the PDP, and not the main WAGO connectors along the sides of the PDP as shown in Figure 9-13. With the exception of a single CTR Electronics Pneumatics Control Module (PCM, P/N: am-2858), no other electrical load shall be connected to these PDP terminals.

![Figure 9-13 VRM and PCM power source](image)

Please reference How to Wire an FRC Robot for Wireless Bridge wiring information.

R49. Only one wire shall be connected to each WAGO connector on the PDP.

If multi-point distribution of circuit power is needed (e.g. to provide power to multiple PCMs and/or VRMs from one 20A circuit), then all incoming wires may be appropriately spliced into the main lead (e.g. using an insulated terminal block, crimped splice or soldered wire splice), and the single main lead inserted into the WAGO connector to power the circuit.

R50. The only circuit breakers permitted for use in the PDP are:

A. Snap Action VB3-A Series, terminal style F57
B. Snap Action MX5-A or MX5-L Series, 40A rating or lower

R51. The fuses in the PDP shall only be replaced with functionally identical fuses (mini automotive blade fuses with values matching those printed on the PDP).

Note that these fuses must be pressed very firmly to seat properly. Improper seating can cause component reboots during impacts.
R52. Each branch circuit must be protected by one and only one circuit breaker on the PDP per Table 9-3. No other electrical load can be connected to the breaker supplying this circuit.

<table>
<thead>
<tr>
<th>Branch Circuit</th>
<th>Circuit Breaker Value</th>
<th>Quantity Allowed Per Breaker</th>
</tr>
</thead>
<tbody>
<tr>
<td>Motor Controller</td>
<td>Up to 40A</td>
<td>1</td>
</tr>
<tr>
<td>CUSTOM CIRCUIT</td>
<td>Up to 40A</td>
<td>1</td>
</tr>
<tr>
<td>Automation Direct Relay 40A (6M40)</td>
<td>Up to 40A</td>
<td>1</td>
</tr>
<tr>
<td>Fans permitted per Table 9-1 and not already part of COTS computing devices</td>
<td>Up to 20A</td>
<td>No limit</td>
</tr>
<tr>
<td>Spike Relay Module</td>
<td>Up to 20A</td>
<td>1</td>
</tr>
<tr>
<td>Automation Direct Relay 25A (6M25)</td>
<td>Up to 20A</td>
<td>1</td>
</tr>
<tr>
<td>PCM – with compressor</td>
<td>20A</td>
<td>1</td>
</tr>
<tr>
<td>Additional VRM (non-radio)/Additional PCM (non-compressor)</td>
<td>20A</td>
<td>3 total</td>
</tr>
<tr>
<td>Automation Direct Relay 12A (6M12)</td>
<td>Up to 10A</td>
<td>1</td>
</tr>
</tbody>
</table>

R52 does not prohibit the use of smaller value breakers in the PDP or any fuses or breakers within CUSTOM CIRCUITS for additional protection.

R53. All circuits shall be wired with appropriately sized insulated copper wire (SIGNAL LEVEL cables don’t have to be copper):

<table>
<thead>
<tr>
<th>Application</th>
<th>Minimum Wire Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>31 – 40A protected circuit</td>
<td>12 AWG (13 SWG or 4 mm2)</td>
</tr>
<tr>
<td>21 – 30A protected circuit</td>
<td>14 AWG (16 SWG or 2.5 mm2)</td>
</tr>
<tr>
<td>6 – 20A protected circuit</td>
<td>18 AWG (19 SWG or 1 mm2)</td>
</tr>
<tr>
<td>Between the PDP dedicated terminals and the VRM or PCM</td>
<td></td>
</tr>
<tr>
<td>Compressor outputs from the PCM</td>
<td></td>
</tr>
<tr>
<td>Between the PDP and the roboRIO</td>
<td></td>
</tr>
<tr>
<td>≤5A protected circuit</td>
<td>22 AWG (22 SWG or 0.5 mm2)</td>
</tr>
<tr>
<td>VRM 2A circuits</td>
<td>24 AWG (24 SWG or .25 mm2)</td>
</tr>
<tr>
<td>roboRIO PWM port outputs</td>
<td>26 AWG (27 SWG or 0.14 mm2)</td>
</tr>
<tr>
<td>SIGNAL LEVEL circuits (i.e. circuits which draw ≤1A continuous and have a source incapable of delivering >1A, including but not limited to roboRIO non-PWM outputs, CAN signals, PCM Solenoid outputs, VRM 500mA outputs and Arduino outputs)</td>
<td>28 AWG (29 SWG or .08 mm2)</td>
</tr>
</tbody>
</table>
Wires that are recommended by the device manufacturer or originally attached to legal devices are considered part of the device and by default legal. Such wires are exempt from R53.

In order to show compliance with these rules, teams should use wire with clearly labeled sizes if possible. If unlabeled wiring is used, teams should be prepared to demonstrate that the wire used meets the requirements of R53 (e.g. wire samples and evidence that they are the required size).

R54. Branch circuits may include intermediate elements such as COTS connectors, splices, COTS flexible/rolling/sliding contacts, and COTS slip rings, as long as the entire electrical pathway is via appropriately gauged/rated elements.

Slip rings containing mercury are prohibited per R8.

R55. All non-SIGNAL LEVEL wiring with a constant polarity (i.e., except for outputs of relay modules, motor controllers, or sensors) shall be color-coded along their entire length from the manufacturer as follows:

A. Red, yellow, white, brown, or black-with-stripe on the positive (e.g. +24VDC, +12VDC, +5VDC, etc.) connections.
B. Black or blue for the common or negative side (-) of the connections.

Exceptions to this rule include:

C. Wires that are originally attached to legal devices and any extensions to these wires using the same color as the manufacturer.
D. Ethernet cable used in POE cables.

R56. CUSTOM CIRCUITS shall not directly alter the power pathways between the ROBOT battery, PDP, motor controllers, relays (per R29-B), motors and actuators (per R27), pneumatic solenoid valves, or other elements of the ROBOT control system (items explicitly mentioned in R66). Custom high impedance voltage monitoring or low impedance current monitoring circuitry connected to the ROBOT'S electrical system is acceptable, if the effect on the ROBOT outputs is inconsequential.

A noise filter may be wired across motor leads or PWM leads. Such filters will not be considered CUSTOM CIRCUITS and will not be considered a violation of R56 or R73.

Acceptable signal filters must be fully insulated and must be one of the following:

- A one microfarad (1 µF) or less, non-polarized, capacitor may be applied across the power leads of any motor on your ROBOT (as close to the actual motor leads as reasonably possible).
- A resistor may be used as a shunt load for the PWM control signal feeding a servo.

9.8 Control, Command & Signals System

R57. ROBOTS must be controlled via one (1) programmable National Instruments roboRIO (P/N: am3000), with image version FRC_roboRIO_2020_v10 or later.

There are no rules that prohibit co-processors, provided commands originate from the roboRIO to enable and disable all power regulating devices. This includes motor controllers legally wired to the CAN-bus.
2021 FIRST® Robotics Competition

R58. One (1) OpenMesh Wireless Bridge (P/N: OM5P-AN or OM5P-AC), that has been configured with the appropriate encryption key for your team number at each event, is the only permitted device for communicating to and from the ROBOT during the MATCH.

R59. The roboRIO Ethernet PORT must be connected to the Wireless Bridge PORT labeled “18-24 vPOE,” closest to the power connector (either directly, via a network switch, or via a CAT5 Ethernet pigtail).

Note: Placing a switch between the roboRIO and radio may impede the ability for FIELD STAFF to troubleshoot roboRIO connection issues on the FIELD. Teams may be asked to try directly connecting from the radio to roboRIO as part of troubleshooting efforts.

R60. Communication between the ROBOT and the OPERATOR CONSOLE is restricted as follows:

A. Network ports:
 i. HTTP 80: Camera connected via switch on the ROBOT, bi-directional
 ii. HTTP 443: Camera connected via switch on the ROBOT, bi-directional
 iii. UDP/TCP 554: Real-Time Streaming Protocol for h.264 camera streaming, bi-directional
 iv. UDP 1130: Dashboard-to-ROBOT control data, uni-directional
 v. UDP 1140: ROBOT-to-Dashboard status data, uni-directional
 vi. UDP/TCP 1180-1190: Camera data from the roboRIO to the Driver Station when the camera is connected to the roboRIO via USB, bi-directional
 vii. TCP/UDP 1250: CTRE Diagnostics Server, bi-directional
 viii. TCP 1735: SmartDashboard, bi-directional
 ix. UDP/TCP 5800-5810: Team Use, bi-directional

 Teams may use these ports as they wish if they do not employ them as outlined above (i.e. TCP 1180 can be used to pass data back and forth between the ROBOT and the DS if the team chooses not to use the camera on USB).

B. Bandwidth: no more than 4 Mbits/second.

Note that the 4 Mbit limit will be strictly enforced by the Wireless Bridge.

The FMS Whitepaper has more details on how to check and optimize bandwidth usage.

While FIRST makes every effort to provide a wireless environment that allows teams access to a full 4 Mbits/second data rate (with about 100 Kbit used for ROBOT control and status), at some events wireless conditions may not accommodate this.

R61. The roboRIO, Driver Station software, and Wireless Bridge must be configured to correspond to the correct team number, per the procedures defined in Getting Started with the 2021 Control System.

R62. All signals must originate from the OPERATOR CONSOLE and be transmitted to the ROBOT via the ARENA Ethernet network.
R63. No form of wireless communication shall be used to communicate to, from, or within the ROBOT, except those required per R58, R62, and tags used for location detection systems if provided by the event.

Devices that employ signals in the visual spectrum (e.g. cameras) and non-RF sensors that don't receive human-originated commands (e.g. “beam break” sensors or IR sensors on the ROBOT used to detect FIELD elements) are not wireless communication devices and thus R63 doesn't apply.

R64. The Wireless Bridge must be mounted on the ROBOT such that the diagnostic lights are visible to ARENA personnel.

Teams are encouraged to mount the wireless bridge away from noise generating devices such as motors, PCM(s), and VRM(s).

R65. ROBOTS must use at least one (1), but no more than two (2), diagnostic ROBOT Signal Lights (RSL) (P/N: 855PB-B12ME522).

Any RSL must be:

A. mounted on the ROBOT such that it is easily visible while standing 3 ft. (~100 cm) in front of the ROBOT,
B. connected to the “RSL” supply terminals on the roboRIO, and
C. wired for solid light operation, by placing a jumper between the “La” and “Lb” terminals on the light per Figure 9-14.

Please see How to Wire an FRC Robot for connection details.

![Figure 9-14 RSL jumper wiring](image)

R66. The Driver Station software, roboRIO, Power Distribution Panel, Pneumatics Control Modules, Voltage Regulator Modules, RSL, 120A breaker, motor controllers, relay modules (per R29-B), Wireless Bridge, and batteries shall not be tampered with, modified, or adjusted in any way (tampering includes drilling, cutting, machining, rewiring, disassembling, painting, etc.), with the following exceptions:

Please note that the Driver Station application is a separate application from the Dashboard. The Driver Station software may not be modified, while teams are expected to customize their Dashboard code.

A. User programmable code in the roboRIO may be customized.
B. Motor controllers may be calibrated as described in owner’s manuals.
C. Fans may be attached to motor controllers and may be powered from the power input terminals.
D. If powering the compressor, the fuse on a Spike H-Bridge Relay may be replaced with a VB3A-20A Snap-Action circuit breaker.

E. Wires, cables, and signal lines may be connected via the standard connection points provided on the devices.

F. Fasteners (including adhesives) may be used to attach the device to the OPERATOR CONSOLE or ROBOT or to secure cables to the device.

G. Thermal interface material may be used to improve heat conduction.

H. Labeling may be applied to indicate device purpose, connectivity, functional performance, etc.

I. Jumpers may be changed from their default location.

J. Limit switch jumpers may be removed from a Jaguar motor controller and a custom limit switch circuit may be substituted.

K. Device firmware may be updated with manufacturer supplied firmware.

L. Integral wires on motor controllers may be cut, stripped, and/or connectorized.

M. Devices may be repaired, provided the performance and specifications of the device after the repair are identical to those before the repair.

N. The cover may be removed from the Talon SRX data port.

O. Electrical tape may be applied to the aluminum plate inside the Wireless Bridge.

P. The input terminal cover from the Power Distribution Panel may be omitted (no other element may be installed using the threaded holes to install something in place of the PDP terminal cover).

Please note that while repairs are permitted, the allowance is independent of any manufacturer’s warranty. Teams make repairs at their own risk and should assume that any warranty or RMA options are forfeited. Be aware that diagnosing and repairing COMPONENTS such as these can be difficult.

For more information about modification O, please see this article.

R67. Neither 12VDC power nor relay module or motor controller outputs shall be directly connected to the roboRIO (with the exception of the designated 12VDC input).

R68. Every relay module (per R29-B), servo controller, and PWM motor controller shall be connected to a corresponding port (relays to Relay ports, servo controllers and PWM controllers to PWM ports) on the roboRIO (either directly or through a WCP Spartan Sensor Board) or via a legal MXP connection (per R69). They shall not be controlled by signals from any other source, with the exception of the Nidec Dynamo motor controller which must also be connected to the roboRIO Digital I/O.

R69. If a motor is controlled via the MXP, its power regulating device must be connected by one of the following methods:

A. directly to any PWM pins,

B. via a network of PASSIVE CONDUCTORS used to extend the PWM pins, or

C. via one approved ACTIVE DEVICE:

i. Kauai Labs navX MXP

ii. RCAL MXP Daughterboard

iii. REV Robotics RIOduino

iv. REV Robotics Digit Board

v. West Coast Products Spartan Sensor Board

vi. Huskie Robotics HUSKIE 2.0 Board
A PASSIVE CONDUCTOR is any device or circuit whose capability is limited to the conduction and/or static regulation of the electrical energy applied to it (e.g. wire, splices, connectors, printed wiring board, etc.).

An “ACTIVE DEVICE” is any device capable of dynamically controlling and/or converting a source of electrical energy by the application of external electrical stimulus.

The “network of PASSIVE CONDUCTORS” only applies to the pins being used for PWM output to motors or servos. This means that connecting an ACTIVE DEVICE, such as a sensor to one MXP pin does not prevent other MXP pins from being used in accordance with R69-B.

R70. Each CAN motor controller must be controlled with signal inputs sourced from the roboRIO and passed via either a PWM (wired per R68) or CAN-bus (either directly or daisy-chained via another CAN-bus device) signal, but both shall not be wired simultaneously on the same device.

As long as the CAN bus is wired legally so that the heartbeat from the roboRIO is maintained, all closed loop control features of the CAN motor controller may be used. (That is, commands originating from the roboRIO to configure, enable, and specify an operating point for all CAN motor controller closed loop modes fit the intent of R57).

R71. Each PCM must be controlled with signal inputs sourced from the roboRIO and passed via a CAN-bus connection from the roboRIO (either directly or daisy-chained via another CAN-bus device).

R72. The PDP CAN interface must be connected to the CAN-bus on the roboRIO (either directly or daisy-chained via another CAN-bus device).

For documentation on how to wire the CAN-bus connections of the PDP see How to Wire an FRC Robot.

R73. The CAN-bus must be connected to the roboRIO CAN port.

A. Additional switches, sensor modules, CUSTOM CIRCUITS, third-party modules, etc. may also be placed on the CAN-bus.

B. No device that interferes with, alters, or blocks communications among the roboRIO and the PDP, PCMs, and/or CAN Motor Controllers on the bus will be permitted.

Only one wire should be inserted into each Weidmuller CAN connector terminal. For documentation on how to wire the CAN-bus connections of the roboRIO, PCM, PDP and CAN motor controllers, see How to Wire an FRC Robot.

9.9 Pneumatic System

In order to maintain safety, the rules in this section apply at all times while at the event, not just while the ROBOT is on the FIELD for MATCHES.

R74. To satisfy multiple constraints associated with safety, consistency, Inspection, and constructive innovation, no pneumatic parts other than those explicitly permitted in this section shall be used on the ROBOT.

R75. All pneumatic items must be COTS pneumatic devices and either:

A. rated by their manufacturers for pressure of at least 125psi (~862 kPa), or
B. installed downstream of the primary relieving regulator (see R82), and rated for pressure of at least 70psi (~483 kPa).

Any pressure specification such as "working," "operating," "maximum," etc. may be used to satisfy the requirements of R75.

It is recommended that all pneumatic items be rated by their manufacturers for a working pressure of at least 60 psi (~414 kPa).

R76. All pneumatic COMPONENTS must be used in their original, unaltered condition. Exceptions are as follows:

A. tubing may be cut,
B. wiring for pneumatic devices may be modified to interface with the control system,
C. assembling and connecting pneumatic COMPONENTS using the pre-existing threads, mounting brackets, quick-connect fittings, etc.,
D. removing the mounting pin from a pneumatic cylinder, provided the cylinder itself is not modified,
E. labeling applied to indicate device purpose, connectivity, functional performance, etc.

Do not, for example, paint, file, machine, or abrasively remove any part of a pneumatic COMPONENT – this would cause the part to become a prohibited item. Consider pneumatic COMPONENTS sacred.

R77. The only pneumatic system items permitted on ROBOTS include the items listed below.

A. Pneumatic pressure vent plug valves functionally equivalent to those provided in the KOP,

Examples of acceptable valves include Parker PV609-2 or MV709-2.

B. Pressure relief valves functionally equivalent to those provided in the KOP,

Examples of acceptable valves include Norgren 16-004-011, 16-004-003 or McMaster-Carr 48435K714.

To be considered functionally equivalent the valve must be preset or adjustable to 125 psi (~862 kPA) and capable of relieving at least 1 scfm (~472 cm3/s).

C. Solenoid valves with a maximum ¼ in. (nominal, ~3 mm) NPT, BSPP, or BSPT port diameter or integrated quick connect ¼ in. (nominal, ~6mm) outside diameter tubing connection,

D. Additional pneumatic tubing, with a maximum ¼ in. (nominal, ~6 mm) outside diameter,

E. Pressure transducers, pressure gauges, passive flow control valves (specifically "needle valve"), manifolds, and connecting fittings (including COTS pneumatic U-tubes),

F. Check and quick exhaust valves, provided that the requirements of R86-A are still met,

G. Shutoff valves which relieve downstream pressure to atmosphere when closed (may also be known as 3-way or 3-way exhausting valves),

H. Pressure regulators with the maximum outlet pressure adjusted to no more than 60 psi (~413 kPa),

I. Pneumatic cylinders, pneumatic linear actuators, and rotary actuators,

J. Pneumatic storage tanks (with the exception of White Clippard tanks P/N: AVT-PP-41),

K. One (1) compressor that is compliant with R79,

L. Debris or coalescing (water) filters, and
M. Venturi valves (note: the high-pressure side of a Venturi valve is considered a pneumatic device and must follow all pneumatic rules. The vacuum side of a Venturi valve is exempt from the pneumatic rules per “a” in the Blue Box below).

The following devices are not considered pneumatic devices and are not subject to pneumatic rules (though they must satisfy all other rules):

a. a device that creates a vacuum
b. closed-loop COTS pneumatic (gas) shocks
c. air-filled (pneumatic) wheels
d. pneumatic devices not used as part of a pneumatic system (i.e. used in a way that does not allow them to contain pressurized air)

R78. If pneumatic COMPONENTS are used, the following items are required as part of the pneumatic circuit and must be used in accordance with this section, as illustrated in Figure 9-15.

A. One (1) FIRST Robotics Competition legal compressor (per R79)
B. Pressure relief valve (per R77-B) connected via legal rigid fittings (e.g. brass, nylon, etc.)
C. Nason pressure switch, P/N SM-2B-115R/443
D. At least one pressure vent plug
E. Stored pressure gauge (upstream from Primary Regulator, must show psi or kPa)
F. Working pressure gauge (downstream from Primary Regulator, must show psi or kPa)
G. Working pressure regulator

![Figure 9-15 Pneumatic circuitry](image-url)
R79. Throughout an event, compressed air on the ROBOT must be provided by its one onboard compressor only. Compressor specifications must not exceed nominal 1.1 cfm (~519 cm³/s) flow rate @ 12VDC at any pressure.

A ROBOT’S compressor may be substituted by another compressor, but a ROBOT may only have one designated compressor at a time, and all compressed air on the ROBOT must be sourced from a single compressor.

Note: Viair C-series compressors, which have a max working pressure of 120 PSI, are rated for intermittent pressures greater than 125 PSI and therefore meet the requirements of R75.

R80. Stored air pressure on the ROBOT must be no greater than 120 psi (~827 kPa). No stored air pressure intended for the ROBOT may be located off-board the ROBOT.

R81. Working air pressure (air pressure used to actuate devices) on the ROBOT must be no greater than 60 psi (~413 kPa) and must be provided through a single primary adjustable, relieving, pressure regulator.

Examples of acceptable valves include: Norgren regulator P/N: R07-100-RNEA or Monnier P/N: 101-3002-1.

R82. Only the compressor, relief valve, pressure switch, pressure vent plug, pressure gauge, storage tanks, tubing, pressure transducers, filters, and connecting fittings may be in the high-pressure pneumatic circuit upstream from the regulator.

It is recommended that all COMPONENTS in the high-pressure pneumatic circuit upstream from the regulator be rated for at least 115 psi (~793 kPa) working pressure.

R83. Pressure gauges must be placed in easily visible locations upstream and downstream of the regulator to display the stored and working pressures.

R84. The relief valve must be attached directly to the compressor or attached by legal hard fittings (e.g. brass, nylon, etc.) connected to the compressor output port.

Teams are required to check and/or adjust the relief valve to release air at 125 psi (~861 kPa). The valve may or may not have been calibrated prior to being supplied to teams.

Instructions for adjusting the pressure relief valve can be found in the Pneumatics Manual.

R85. The pressure switch requirements are:

A. It must be Nason P/N: SM-2B-115R/443.
B. It must be connected to the high-pressure side of the pneumatic circuit (i.e. prior to the pressure regulator) to sense the stored pressure of the circuit.
C. The two wires from the pressure switch must be connected directly to the pressure switch input of the PCM controlling the compressor or, if controlled using the roboRIO and a relay, to the roboRIO.
D. If connected to the roboRIO, the roboRIO must be programmed to sense the state of the switch and operate the relay module that powers the compressor to prevent overpressuring the system.
R86. Any pressure vent plug must be:
 A. connected to the pneumatic circuit such that, when manually operated, it will vent to the atmosphere to relieve all stored pressure in a reasonable amount of time, and
 B. placed on the ROBOT so that it is visible and easily accessible.

R87. The outputs from multiple solenoid valves must not be plumbed together.

9.10 OPERATOR CONSOLE

R88. The Driver Station software provided by National Instruments (install instructions found here) is the only application permitted to specify and communicate the operating mode (i.e. Autonomous/Teleoperated) and operating state (Enable/Disable) to the ROBOT. The Driver Station software must be revision 21.0 or newer.

Teams are permitted to use a portable computing device of their choice (laptop computer, tablet, etc.) to host the Driver Station software while participating in competition MATCHES.

R89. The OPERATOR CONSOLE, the set of COMPONENTS and MECHANISMS used by the DRIVERS and/or HUMAN PLAYER to relay commands to the ROBOT, must include a graphic display to present the Driver Station diagnostic information. It must be positioned within the OPERATOR CONSOLE so that the screen display can be clearly seen during Inspection and in a MATCH.

R90. Devices hosting the Driver Station software must only interface with the Field Management System (FMS) via the Ethernet cable provided at the PLAYER STATION (e.g. not through a switch). Teams may connect the FMS Ethernet cable to their Driver Station device directly via an Ethernet pigtail, or with a single-port Ethernet converter (e.g. docking station, USB-Ethernet converter, Thunderbolt-Ethernet converter, etc.). The Ethernet port on the OPERATOR CONSOLE must be easily and quickly accessible.

Teams are strongly encouraged to use pigtails on the Ethernet port used to connect to the FMS. Such pigtails will reduce wear and tear on the device’s port and, with proper strain relief employed, will protect the port from accidental damage.

R91. The OPERATOR CONSOLE must not
 A. be longer than 60 in. (~152 cm)
 B. be deeper than 14 in. (~35 cm) (excluding any items that are held or worn by the DRIVERS during the MATCH)
 C. extend more than 6 ft. 6 in. (~198 cm) above the floor
 D. attach to the FIELD (except as permitted by G26)

There is a 54 in. (~137 cm) long by 2 in. (nominal) wide strip of hook-and-loop tape ("loop" side) along the center of the PLAYER STATION support shelf that should be used to secure the OPERATOR CONSOLE to the shelf, per G26. See PLAYER STATION for details.

Please note that while there is no hard weight limit, OPERATOR CONSOLES that weigh more than 30 lbs. (~13 kg.) will invite extra scrutiny as they are likely to present unsafe circumstances.
R92. Other than the system provided by the FIELD, no other form of wireless communications shall be used to communicate to, from, or within the OPERATOR CONSOLE.

Examples of prohibited wireless systems include, but are not limited to, active wireless network cards and Bluetooth devices. For the case of the FIRST Robotics Competition, a motion sensing input device (e.g. Microsoft Kinect) is not considered wireless communication and is allowed.

R93. OPERATOR CONSOLES shall not be made using hazardous materials, be unsafe, cause an unsafe condition, or interfere with other DRIVE TEAMS or the operation of other ROBOTS.
10 INSPECTION & ELIGIBILITY RULES

This section describes the rules governing MATCH participation. A team has participated in a MATCH if any member of their DRIVE TEAM is in the ALLIANCE STATION, with or without the ROBOT on the FIELD, at the start of the MATCH.

At each event, the Lead ROBOT Inspector (LRI) has final authority on the legality of any COMPONENT, MECHANISM, or ROBOT. Inspectors may re-Inspect ROBOTS at any time to ensure compliance with the rules. Teams are encouraged to consult with Inspectors or the LRI if they have any questions regarding the legality of a ROBOT or about how to make a ROBOT legal.

While there is no specific defined procedure in place for teams to be re-inspected prior to Playoff MATCHES, it is typical for Inspectors to use the re-Inspection discretion described above to do a limited re-Inspection on all ROBOTS near the end of Qualification MATCHES or beginning of Playoff MATCHES to help identify any modifications that should be re-Inspected per I4.

Prior to the start of a MATCH, any ROBOT which is unable or ineligible to participate in that MATCH as determined by the FIRST Technical Advisor (FTA), LRI, or Head REFEREE is declared to be BYPASSED and is DISABLED. A team whose ROBOT is BYPASSED remains eligible to receive Qualification Ranking Points or Playoff MATCH points provided that its ROBOT has passed Inspection, per I2.

I1. It’s your team’s ROBOT. The ROBOT and its MAJOR MECHANISMS must be built by the FIRST Robotics Competition team.

A MAJOR MECHANISM is a group of COMPONENTS and/or MECHANISMS assembled together to address at least one (1) game challenge: robot movement, game piece control, FIELD element manipulation, or performance of a scorable task without the assistance of another ROBOT.

I1 requires that the ROBOT and its MAJOR MECHANISMS were built by its team, but isn’t intended to prohibit or discourage assistance from other teams (e.g. fabricating elements, supporting construction, writing software, developing game strategy, contributing COMPONENTS and/or MECHANISMS, etc.)

Examples of MAJOR MECHANISMS include, but are not limited to, assemblies listed below:

a. an assembly used to manipulate a game piece
b. an assembly used to position a ROBOT for an end game task
c. an assembly used to manipulate a FIELD element
d. an assembly used to move the ROBOT around the FIELD

Examples that would generally not be considered MAJOR MECHANISMS, and thus probably aren’t subject to I1 include, but are not limited to, the following:

a. a gearbox assembly
b. a COMPONENT or MECHANISM that’s part of a MAJOR MECHANISM
c. COTS items

Neither I1 nor the language in its Blue Box define specific thresholds for how much of a MAJOR MECHANISM must be the result of the team’s effort. I1 expects and requires the team’s honest assessment of whether they built the MAJOR MECHANISMS of their ROBOT.
Attempts to exploit loopholes in the definition of MAJOR MECHANISM in order to bypass this requirement are not in the spirit of I1 or the FIRST Robotics Competition. Examples of exploitation include:

a. assembling pieces of a MAJOR MECHANISM provided by another team, except COTS kits
b. receiving a mostly complete MAJOR MECHANISM from another team and providing a small piece

I2. Get inspected before playing a Qualification/Playoff MATCH. A team is only permitted to participate in a Qualification or Playoff MATCH and receive Ranking or MATCH Points respectively if their ROBOT has passed an initial, complete Inspection.

Violation: If prior to the start of the MATCH, the team is DISQUALIFIED and not eligible to participate in the MATCH. If after the start of the MATCH, the entire ALLIANCE receives a RED CARD for that MATCH.

Please take note of this rule. It is important that FIRST Robotics Competition teams ensure their ALLIANCE partners have passed Inspection. Allowing a partner that has not passed Inspection to play puts the ALLIANCE at risk of RED CARDS. Teams should check with their ALLIANCE partners early and help them pass Inspection before competing.

I3. Bring it all to Inspection. At the time of Inspection, the OPERATOR CONSOLE and the ROBOT must be presented with all MECHANISMS (including all COMPONENTS of each MECHANISM), configurations, and decorations that will be used on the ROBOT in MATCHES without re-Inspection (per I4) and may not exceed 150 lbs. (~68kg) (note that while up to 150 lbs. of ROBOT MECHANISMS may be inspected together, the ROBOT configuration used in a MATCH may not violate R5). The OPERATOR CONSOLE and exceptions listed in R5 are not included in this weight.

I4. Unless the change is listed below, any change to a ROBOT must get re-Inspected. A ROBOT may play MATCHES with a subset of the MECHANISMS that were present during Inspection provided the reconfigured ROBOT still meets all ROBOT Rules. Only MECHANISMS that were present during the Inspection may be added, removed, or reconfigured between MATCHES without re-Inspection per I4. If a ROBOT is modified after its most recent passed Inspection, it must be re-Inspected before it is eligible to participate in a MATCH. A ROBOT that plays in a MATCH with an un-Inspected modification is subject to retro-active DISQUALIFICATION at the discretion of the LRI and Head REFEREE.

Exceptions are listed in A through F (unless they result in a significant change to the ROBOT’S size, weight, legality, or safety).

A. addition, relocation, or removal of fasteners (e.g. cable ties, tape, and rivets)
B. addition, relocation, or removal of labeling or marking
C. revision of ROBOT code
D. replacement of a COTS COMPONENT with an identical COTS COMPONENT
E. replacement of a MECHANISM with an identical MECHANISM (size, weight, material)
F. additions, removals, or reconfiguration of ROBOT with a subset of MECHANISMS already inspected per I3

I5. Don’t exploit I4. Teams may not use the re-Inspection process in I4 to circumvent the weight limit in I3.

This restriction is not intended to prevent a team from returning to a previous configuration (e.g. due to an unsuccessful upgrade or failure of a new component). If a
team is believed to be violating this rule, the LRI will discuss the situation with the team to understand the changes and, if appropriate, the LRI in conjunction with the team will select a single configuration with which the team will compete for the duration of the event.

Example 1: A ROBOT passes initial Inspection (which includes MECHANISM A). Its team then decides they want to use MECHANISM B, which was not Inspected. The weight of the ROBOT, A, and B is less than the weight limit in I3, but more than that in R5. I4 requires the ROBOT be re-Inspected, and I5 allows the ROBOT, A, and B to be inspected collectively. If passed, the ROBOT may then compete in subsequent MATCHES with A or B.

Example 2: A ROBOT passes initial Inspection (which includes MECHANISM A). Its team then decides they want to use MECHANISM B, which was not Inspected. The weight of the ROBOT, A, and B is greater than the weight limit in I3. This requires re-Inspection per I4 and A is excluded to satisfy I3. B breaks, and the team decides to switch back to A. The ROBOT must be re-Inspected per I4, and the team is not violating I5.

Example 3: A team arrives at an event with a ROBOT, MECHANISM A, and MECHANISM B, which collectively weigh 175 lbs. The ROBOT passes initial Inspection with A and plays a MATCH. The team switches to B, gets re-Inspected, and plays again. The team switches back to A, gets re-Inspected, and plays again. The team switches back to B and asks to be re-Inspected. At this point, the LRI suspects the team may be violating I5 and has a discussion with the team to understand the changes being made. The team reveals that I5 has been violated, and the LRI works with them to select A or B for use for the remainder of the event.

I6. This rule has been removed for the 2021 season.

I7. ROBOTS are off for Inspection, mostly. For the safety of all those involved, ROBOTS, must be presented for Inspection with the ROBOT powered off, pneumatics unpressurized, and springs or other stored energy devices in their lowest potential energy states (e.g. battery removed).

Power and air pressure should only be enabled on the ROBOT during those portions of the Inspection process where it is absolutely required to validate certain system functionality and compliance with specific rules (firmware check, etc.). Inspectors may allow the ROBOT to be powered beyond the parameters above if both criteria below are met.

A. The ROBOT design requires power or a charged stored energy device in order to confirm that the ROBOT meets volume requirements, and

B. The team has included safety interlocks that mitigate unexpected release of such stored energy.

The team may be asked to demonstrate these interlocks during the inspection process.

I8. No student, no Inspection. At least one student team member must accompany the ROBOT for any Inspection efforts.

Exceptions may be made for major conflicts, e.g. religious holidays, major testing, transportation issues, etc.
11 TOURNAMENTS

Each 2021 FIRST® Robotics Competition event is played in a tournament format. Each tournament consists of two sets of MATCHES called Qualification MATCHES and Playoff MATCHES.

Qualification MATCHES allow each team to earn Ranking Points which determine their seeding position and may qualify them for participation in the Playoff MATCHES.

Playoff MATCHES determine the event Champions.

11.1 MATCH Schedules

A MATCH schedule is used to coordinate MATCHES at an Event. Figure 11-1 details information shown on each schedule.

![Figure 11-1 Sample MATCH schedule](image)

11.2 REFEREE Interaction

The Head REFEREE has the ultimate authority in the ARENA during the event, but may receive input from additional sources, e.g. Game Designers, FIRST personnel, FTA, and technical staff. The Head REFEREE rulings are final. No event personnel, including the Head REFEREE, will review video, photos, artistic renderings, etc. of any MATCH, from any source, under any circumstances.

If a DRIVE TEAM needs clarification on a ruling or score, per C9, one (1) pre-college student from that DRIVE TEAM should address the Head REFEREE after the ARENA Reset Signal (e.g. FIELD lights turn green or green with white). A DRIVE TEAM member signals their desire to speak with the Head REFEREE by standing in the corresponding Red or Blue Question Box, which are located on the floor near each end of the scoring table. Depending on timing, the Head REFEREE may postpone any requested discussion until the end of the subsequent MATCH as necessary.

While FMS tracks quantities of FOULS, FIRST instructs REFEREES to not self-track details about FOULS; as a result, we don’t expect REFEREES to recall details about what FOULS were made, when they occurred, and against whom.

Any reasonable question is fair game in the Question Box, and Head REFEREES will do good faith efforts to provide helpful feedback (e.g. how/why certain FOULS are being called, why a particular ROBOT may be susceptible to certain FOULS based on its...
design or game play, how specific rules are being called or interpreted), but please know that they will likely not be able to supply specific details.

11.2.1 YELLOW and RED CARDS

In addition to rule violations explicitly listed throughout the 2021 Game Manual, YELLOW CARDS and RED CARDS are used in FIRST Robotics Competition to address team and ROBOT behavior that does not align with the mission, values, and culture of FIRST.

As noted in Rule Violations and C1, the Head REFEREE may assign a YELLOW CARD as a warning, or a RED CARD for DISQUALIFICATION in MATCH for egregious behavior inappropriate at a FIRST Robotics Competition event.

A YELLOW or RED CARD is indicated by the Head REFEREE standing in front of the team’s PLAYER STATION and holding a YELLOW and/or RED CARD in the air.

YELLOW CARDS are additive, meaning that a second YELLOW CARD is automatically converted to a RED CARD. A team is issued a RED CARD for any subsequent incident in which they receive an additional YELLOW CARD, including earning a second YELLOW CARD during a single MATCH. A second YELLOW CARD is indicated by the Head REFEREE standing in front of the team’s PLAYER STATION and holding a YELLOW CARD and RED CARD in the air simultaneously after the completion of the MATCH. A team that has received either a YELLOW CARD or a RED CARD carries a YELLOW CARD into subsequent MATCHES, except as noted below.

Once a team receives a YELLOW or RED CARD, its team number is presented with a yellow background on the Audience Screen at the beginning of all subsequent MATCHES, including any replays, as a reminder to the team, the REFEREES, and the audience that they carry a YELLOW CARD.

All YELLOW CARDS are cleared in FMS at the conclusion of Qualification MATCHES.

During the Playoff MATCHES, a team receives a YELLOW or RED CARD for their entire ALLIANCE. If two (2) YELLOW CARDS are accrued by an ALLIANCE, the entire ALLIANCE is issued a RED CARD. A RED CARD results in DISQUALIFICATION and the ALLIANCE loses the MATCH. If both ALLIANCES receive RED CARDS, the ALLIANCE which committed the action earning the RED CARD first chronologically is DISQUALIFIED and loses the MATCH.

YELLOW and RED CARDS are applied based on the following:
Table 11-1 YELLOW and RED CARD application

<table>
<thead>
<tr>
<th>Time YELLOW or RED CARD earned:</th>
<th>MATCH to which CARD is applied:</th>
</tr>
</thead>
<tbody>
<tr>
<td>prior to the start of Qualification MATCHES</td>
<td>team's first Qualification MATCH</td>
</tr>
<tr>
<td>during the Qualification MATCHES</td>
<td>team's current (or just-completed) MATCH. In the case where the team participated as a SURROGATE in the current (or just completed) MATCH, the card is applied to the team's previous MATCH (i.e. the team's second Qualification MATCH).</td>
</tr>
<tr>
<td>between the end of Qualification MATCHES and the start of Playoff MATCHES</td>
<td>ALLIANCE's first Playoff MATCH</td>
</tr>
<tr>
<td>during the Playoff MATCHES</td>
<td>ALLIANCE's current (or just-completed) MATCH.</td>
</tr>
</tbody>
</table>

Please see examples of the application of YELLOW AND RED CARDS as shown in Violation Details.

11.3 MATCH Replays

Over the course of the Tournament it may be necessary for a MATCH to be replayed. Typical causes for replays are MATCHES that end in a tie during the Playoffs, MATCHES that are stopped because FIELD STAFF anticipated FIELD damage or personal injury, or if there is an ARENA FAULT. An ARENA FAULT is an error in ARENA operation that includes, but is not limited to:

A. broken FIELD elements due to
 a. normal, expected game play or
 b. ROBOT abuse of FIELD elements that affects the outcome of the MATCH for their opponents.

A broken FIELD element caused by ROBOT abuse that affects the outcome of the MATCH for their ALLIANCE is not an ARENA FAULT.

B. power failure to a portion of the FIELD (tripping the circuit breaker in the PLAYER STATION is not considered a power failure)
C. improper activation by the FMS
D. errors by FIELD STAFF (except those listed in Other Logistics)

If, in the judgment of the Head REFEREE, an ARENA FAULT occurs that affects the outcome of the MATCH and any team on the affected ALLIANCE desires a replay, the MATCH will be replayed.

The outcome of the MATCH is affected if an error occurs that, in the judgement of the Head REFEREE, changes which ALLIANCE would have won the MATCH and/or the assignment of Ranking Points.

All reasonable effort is made to create the same conditions when replaying a MATCH. This means, for example, that a team that was BYPASSED prior to the start of the MATCH which is to be replayed, is BYPASSED for the replay MATCH. ROBOT and DRIVE TEAM starting locations do not need to be replicated when replaying a MATCH.

Note that an ARENA FAULT that does not affect MATCH outcome in the judgement of the Head REFEREE does not lead to a MATCH replay. Examples include, but are not limited to:
a. a piece of FIELD plastic falls into the FIELD, far away from any human or ROBOT activity, and in such a way that it does not affect MATCH outcome
b. delay in the playing of an ARENA sound
c. mismatch between the timer on the Audience Screen and the ARENA Timer
d. any adjustment or delay in assignment of a penalty (including those made after the MATCH)

11.4 Measurement

At each event, time permitting, the ARENA will be open prior to the start of Qualification MATCHES, during which time teams may survey and/or measure the ARENA and bring ROBOTS on the FIELD to perform sensor calibration. The specific time and duration that the FIELD is open will be communicated to teams at the event. Teams may bring specific questions or comments to the FTA.

T1. Freeze, ROBOT. During the period when the ARENA is open for measurement, ROBOTS can be enabled, but cannot move (i.e. neither the ROBOT, nor anything on the ROBOT, can move), nor can they interact with (e.g. shoot, push, pickup, etc.) POWER CELLS, POWER PORTS, GENERATOR SWITCHES, CONTROL PANELS, or other FIELD elements.

Violation: Verbal warning. If repeated at any point during the event or egregious YELLOW CARD.

11.5 Practice MATCHES

Information about Practice MATCHES has been removed since One Day Events will not include them. This section will be populated if/when appropriate for the 2021 season, via a Team Update. For more information, see the FIRST Inspire Blog, specifically "Update: 2020-2021 FIRST Season Extended."

11.6 Qualification MATCHES

11.6.1 Schedule

The Qualification MATCH schedule is made available as soon as possible, but no later than thirty (30) minutes before Qualification MATCHES are scheduled to begin. Teams receive one (1) hard copy and it is also available at the FIRST Robotics Event Results site, except during exceptional circumstances. Each Qualification schedule consists of a series of rounds in which each team plays one (1) MATCH per round.

11.6.2 MATCH Assignment

FMS assigns each team two (2) ALLIANCE partners for each Qualification MATCH using a predefined algorithm, and teams may not switch Qualification MATCH assignments. The algorithm employs the following criteria at events with 24 or more teams, listed in order of priority:

1. maximize time between each MATCH played for all teams
2. minimize the number of times a team plays opposite any team
3. minimize the number of times a team is allied with any team
4. minimize the use of SURROGATES (teams randomly assigned by the FMS to play an extra Qualification MATCH)
5. provide even distribution of MATCHES played on Blue and Red ALLIANCE
6. provide even distribution of MATCHES played in each PLAYER STATION number.

At events with fewer than 24 participating teams, the criteria are similar, however criterion #5 is changed to minimize the number of times a team swaps between the Blue and Red ALLIANCE rather than an even distribution.
All teams are assigned the same number of Qualification MATCHES, equal to the number of rounds, unless the number of teams multiplied by number of MATCHES is not divisible by six. In this case, the FMS randomly selects some teams to play an extra MATCH. For the purpose of seeding calculations, those teams are designated as SURROGATES for the extra MATCH. If a team plays a MATCH as a SURROGATE, it is indicated on the MATCH schedule, it is always their third Qualification MATCH, and the outcome of the MATCH has no effect on the team’s ranking. YELLOW and RED CARDS assigned to SURROGATES, however, do carry forward to subsequent MATCHES.

The scheduling algorithm works to minimize teams playing in back-to-back MATCHES. However, due to the limited number of teams permitted in the One Day Event structure for the 2021 season, back-to-back plays may occur. If any team is scheduled to play in back-to-back MATCHES, the Head REFEREE will issue a FIELD TIMEOUT unless a longer break is already scheduled to occur (e.g. lunch.) See TIMEOUTS for details.

11.6.3 Qualification Ranking

Ranking Points (RP) are units credited to a team based on their ALLIANCE’S performance in Qualification MATCHES. Ranking Points are awarded to each eligible team at the completion of each Qualification MATCH per Table 4-2.

Exceptions to Ranking Point assignment are as follows:

A. A SURROGATE receives zero (0) Ranking Points.
B. A DISQUALIFIED team, as determined by the Head REFEREE, receives zero (0) Ranking Points in a Qualification MATCH or causes their ALLIANCE to receive zero (0) MATCH points in a Playoff MATCH.
C. A “no-show” team is either DISQUALIFIED from or issued a RED CARD for that MATCH (see C6). A team is declared a no-show if no member of the DRIVE TEAM is in the ALLIANCE STATION at the start of the MATCH.

The total number of Ranking Points earned by a team throughout their Qualification MATCHES divided by the number of MATCHES they’ve been scheduled to play (minus any SURROGATE MATCH), then truncated to two (2) decimal places, is their Ranking Score (RS).

All teams participating in Qualification MATCHES are ranked by Ranking Score. If the number of teams in attendance is ‘n’, they are ranked ‘1’ through ‘n’, with ‘1’ being the team with the highest Ranking Score and ‘n’ being the team with the lowest Ranking Score.

Teams are ranked in order, using the sorting criteria defined in Table 11-2.

<table>
<thead>
<tr>
<th>Order Sort</th>
<th>Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st</td>
<td>Ranking Score</td>
</tr>
<tr>
<td>2nd</td>
<td>Cumulative AUTO points</td>
</tr>
<tr>
<td>3rd</td>
<td>Cumulative ENDGAME points</td>
</tr>
<tr>
<td>4th</td>
<td>Cumulative TELEOP POWER CELL and CONTROL PANEL points</td>
</tr>
<tr>
<td>5th</td>
<td>Random sorting by the FMS</td>
</tr>
</tbody>
</table>

11.7 Playoff MATCHES

In Playoff MATCHES, teams do not earn Ranking Points; they earn a Win, Loss or Tie. Within each series of the Playoff MATCH Bracket, the first ALLIANCE to win two (2) MATCHES advances.
In the case where the Semifinal MATCH scores for both ALLIANCES are equal, the Win is awarded to the ALLIANCE per criteria listed in Table 11-3. A DISQUALIFIED team, as determined by the Head REFEREE, causes their ALLIANCE to receive zero (0) MATCH points in a Playoff MATCH.

In Finals MATCHES, the Champion ALLIANCE is the first ALLIANCE to win two (2) MATCHES. In the case where an ALLIANCE hasn’t won two (2) MATCHES after three (3) MATCHES, the Playoffs proceed with up to three (3) additional Finals MATCHES, called Overtime MATCHES, until an ALLIANCE has won two (2) Finals MATCHES. In the case where the Overtime MATCH scores for both ALLIANCES are equal, the win for that Overtime MATCH is awarded based on the criteria listed in Table 11-3.

<table>
<thead>
<tr>
<th>Order Sort</th>
<th>Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>1<sup>st</sup></td>
<td>Cumulative FOUL and TECH FOUL points due to opponent rule violations</td>
</tr>
<tr>
<td>2<sup>nd</sup></td>
<td>Cumulative AUTO points</td>
</tr>
<tr>
<td>3<sup>rd</sup></td>
<td>Cumulative ENDGAME points</td>
</tr>
<tr>
<td>4<sup>th</sup></td>
<td>Cumulative TELEOP POWER CELL and CONTROL PANEL points</td>
</tr>
<tr>
<td>5<sup>th</sup></td>
<td>MATCH is replayed</td>
</tr>
</tbody>
</table>

11.7.1 ALLIANCE Selection Process

At the end of the Qualification MATCHES, the top four (4) seeded teams become the ALLIANCE Leads. The seeded ALLIANCES are designated, in order, ALLIANCE One, ALLIANCE Two, etc., down to ALLIANCE Four. Using the ALLIANCE selection process described in this section, each ALLIANCE Lead chooses two (2) other teams to join their ALLIANCE.

If a team declines the ALLIANCE Lead position or doesn’t send a student representative for ALLIANCE selection, they are ineligible to participate in the Playoff Tournament. If the declining/absent team would have been an ALLIANCE Lead, all lower ranked ALLIANCE Leads are promoted one spot. The next highest-ranked team moves up to become the ALLIANCE Four Lead.

Each team chooses a student team representative who proceeds to the ARENA at the designated time to represent their team. The designated student representative from each ALLIANCE in a Playoff MATCH is called the ALLIANCE CAPTAIN.

The ALLIANCE selection process consists of two (2) rounds during which each ALLIANCE CAPTAIN invites a team seeded below them in the standings to join their ALLIANCE. The invited team must not already have declined an invitation.

Round 1: In descending order (ALLIANCE One to ALLIANCE Four), each ALLIANCE CAPTAIN invites a single team. The invited team’s representative steps forward and either accepts or declines the invitation.

If the team accepts, it becomes a member of that ALLIANCE. If an invitation from a top four ALLIANCE to another ALLIANCE Lead is accepted, all lower ALLIANCE Leads are promoted one spot. The next highest-seeded, unselected team moves up to become the ALLIANCE Four Lead.

If the team declines, that team is not eligible to be picked again or to be a BACKUP TEAM (see Playoff MATCH Bracket), and the ALLIANCE CAPTAIN extends another invitation to a different team. If an invitation from a top four ALLIANCE to another ALLIANCE Lead is declined, the declining team may still invite teams to join their ALLIANCE; however, it cannot accept invitations from other ALLIANCES.

The process continues until ALLIANCE Four makes a successful invitation.
Round 2: The same method is used for each ALLIANCE CAPTAIN’S second choice except the selection order is reversed, with ALLIANCE Four picking first and ALLIANCE One picking last. This process results in four (4) ALLIANCES of three (3) teams each.

Of the remaining eligible teams, the highest seeded teams must either accept or decline to be included in a pool of available teams until there are up to four (4) teams that accept to be added into the pool. FIELD STAFF will coordinate the assembly of this BACKUP pool immediately after the top ranked ALLIANCE has made their final pick. If a team is not available to accept inclusion in the BACKUP pool, it will be assumed they have declined the invitation.

11.7.2 Playoff MATCH Bracket

The Playoff MATCHES take place following the completion of the Qualification MATCHES and the ALLIANCE selection process. Playoff MATCHES are played in a bracket format as shown in Figure 11-3.

ALLIANCE Leads are assigned to PLAYER STATION 2, the first picks are assigned to their left in PLAYER STATION 1, and second picks are assigned to the ALLIANCE Lead’s right in PLAYER STATION 3. If a BACKUP TEAM is in play, they will be assigned to the PLAYER STATION that was assigned to the DRIVE TEAM they're replacing. Teams cannot change assignments.

For Semifinal MATCHES, the higher seeded ALLIANCE is assigned to the Red ALLIANCE. Beyond the Semifinal MATCHES, the ALLIANCE on the top of each MATCH in Figure 11-3 is assigned to the Red ALLIANCE, regardless of whether they are the higher seeded ALLIANCE in that particular MATCH.

*If necessary

Figure 11-3 Playoff MATCH bracket

In order to allow time between MATCHES for all ALLIANCES, the order of play is as follows:
Table 11-4 Playoff order

<table>
<thead>
<tr>
<th>Semifinal Round 1</th>
<th>Semifinal Round 2</th>
<th>Semifinal Round 3</th>
<th>Finals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Semifinal 1</td>
<td>Semifinal 3</td>
<td>Semifinal Tiebreaker 1</td>
<td>Final 1</td>
</tr>
<tr>
<td>(1 vs. 4)</td>
<td>(1 vs. 4)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Semifinal 2</td>
<td>Semifinal 4</td>
<td>Semifinal Tiebreaker 2</td>
<td>FIELD TIMEOUT</td>
</tr>
<tr>
<td>(2 vs. 3)</td>
<td>(2 vs.3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>FIELD TIMEOUT</td>
<td>Final 2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Any Replays due to ties</td>
<td>FIELD TIMEOUT</td>
</tr>
<tr>
<td></td>
<td>Final Tiebreakers (Overtime)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Any Replays due to ties</td>
<td></td>
</tr>
</tbody>
</table>

1 - if required

11.7.3 Pit Crews

During the Playoff MATCHES, extra team members may be needed to maintain the ROBOT between MATCHES because of the distance between the FIELD and the pit area. Each team is permitted to have three (3) additional pit crew members who can also help with needed ROBOT repairs/maintenance.

11.7.4 TIMEOUTS

This section has been moved to 11.8 and has been updated for One Day Events.

11.7.5 BACKUP TEAMS

In the Playoff MATCHES, it may be necessary for an ALLIANCE to replace one of its members due to a faulty ROBOT. ROBOT faults include but are not limited to:

1. mechanical damage,
2. electrical issues, or
3. software problems.

In this situation, the ALLIANCE CAPTAIN has the option to bring in only the highest seeded team from the pool of available teams to join its ALLIANCE. The team whose ROBOT and DRIVE TEAM replaces another ROBOT and DRIVE TEAM on an ALLIANCE during the Playoff MATCHES is called the BACKUP TEAM.

The resulting ALLIANCE is then composed of four (4) teams. The replaced team remains a member of the ALLIANCE for awards, but cannot return to play, even if their ROBOT is repaired.

Each ALLIANCE is allotted one (1) BACKUP TEAM Coupon during the Playoff MATCHES. If a second ROBOT from the ALLIANCE becomes inoperable, then the ALLIANCE must play the following MATCHES with only two (2) (or even one (1)) ROBOTS.
Example: Three (3) teams, A, B, and C, form an ALLIANCE going into the Playoff MATCHES. The highest seeded team not on one of the eight (8) ALLIANCES is Team D. During one of the Playoff MATCHES, Team C’s ROBOT suffers damage to its mechanical arm. The ALLIANCE CAPTAIN decides to bring in Team D to replace Team C. Team C and their ROBOT are not eligible to play in any subsequent Playoff MATCHES. The new ALLIANCE of Teams A, B, and D are successful in advancing to the Finals and win the event. Teams A, B, C, and D are all recognized as members of the Winning ALLIANCE and receive awards.

In the case where a BACKUP TEAM is part of the Winning or Finalist ALLIANCE, there will be a four (4)-team Winning or Finalist ALLIANCE.

If during a TIMEOUT an ALLIANCE CAPTAIN determines that they need to call up a BACKUP TEAM, they must submit their BACKUP TEAM coupon to the Head REFEREE while there are still at least two (2) minutes remaining on the ARENA Timer. After that point, they will not be allowed to utilize the BACKUP TEAM.

Alternatively, an ALLIANCE CAPTAIN may choose to call up a BACKUP TEAM without using their TIMEOUT by informing the Head REFEREE directly within two (2) minutes of the Head REFEREE issuing the GENERATOR SWITCH Clear Signal preceding their MATCH. If there is no preceding MATCH, the BACKUP TEAM coupon must be submitted no later than two (2) minutes before the scheduled MATCH time.

In the case where the ALLIANCE CAPTAIN’S ROBOT is replaced by a BACKUP TEAM, the ALLIANCE CAPTAIN is allowed as a sixteenth ALLIANCE DRIVE TEAM member. This additional representative may only serve in an advisory role and is considered a COACH (e.g. can’t be a HUMAN PLAYER)

The Head REFEREE will not accept the BACKUP TEAM coupon unless it lists the number of the team whose ROBOT is being replaced and is initialed by the ALLIANCE CAPTAIN. Once a BACKUP TEAM coupon is submitted and accepted by the Head REFEREE, the BACKUP TEAM coupon may not be withdrawn by the ALLIANCE.

T2. An ALLIANCE may not request a TIMEOUT or a BACKUP TEAM after a Playoff MATCH is stopped by the Head REFEREE (e.g. due to an ARENA FAULT or a safety issue). The sole exception is if the replay is due to an ARENA FAULT that rendered a ROBOT inoperable.

Violation: A request presented outside parameters defined will be denied.

If a Playoff MATCH is replayed per T2, the Head REFEREE has the option of calling a FIELD TIMEOUT.

11.8 TIMEOUTS

A TIMEOUT is a period of up to six (6) minutes between MATCHES which is used to pause Qualification or Playoff MATCH progression. If circumstances require any team to play in back-to-back MATCHES, the Head REFEREE will issue a FIELD TIMEOUT to allow teams to prepare for the next MATCH. FIELD TIMEOUTS are the same time duration as TIMEOUTS.

During a TIMEOUT, the ARENA Timer displays the time remaining in the TIMEOUT. Both ALLIANCES enjoy the complete six (6) minute window. During Qualification MATCHES, if the ROBOT(S) who are playing in back-to-back MATCHES completes their repairs before the ARENA Time expires, the team(s) are encouraged to inform the Head REFEREE that they are ready to play. During Playoff MATCHES, if an ALLIANCE completes their repairs before the ARENA Timer expires, the ALLIANCE CAPTAIN is
encouraged to inform the Head REFEREE that they are ready to play. If all ROBOTS/ALLIANCES are ready to play before the TIMEOUT expires, the next MATCH will start.

The GENERATOR SWITCH Clear Signal is indicated to teams with a change in the POWER PORT lights from green with white to fully green, as seen in Table 3-2 and Figure 3-19. FIELD STAFF will manually trigger the GENERATOR SWITCH Clear Signal after all ROBOTS have been removed from their GENERATOR SWITCH.

Teams are expected to have their ROBOTS staged on the FIELD by the end of the TIMEOUT. Teams that cause a delay to the start of a MATCH after a TIMEOUT are at risk of being in violation of C7.

11.8.1 TIMEOUTS in Playoff MATCHES

Each ALLIANCE in the Playoff tournament is issued (1) TIMEOUT.

T3. If an ALLIANCE wishes to use their TIMEOUT, the ALLIANCE CAPTAIN must submit their TIMEOUT coupon to the Head REFEREE within two (2) minutes of the GENERATOR SWITCH Clear signal preceding their MATCH. If there is no preceding MATCH, the TIMEOUT coupon must be submitted no later than two (2) minutes before the scheduled MATCH time. The TIMEOUT will begin two (2) minutes after the GENERATOR SWITCH Clear signal (i.e. at the end of the Team TIMEOUT Coupon Window depicted in Figure 11-4).

A request presented outside the defined parameters in T2 will be denied.

There are no cascading TIMEOUTS. If an ALLIANCE calls a TIMEOUT during a FIELD TIMEOUT, the FIELD TIMEOUT will expire two (2) minutes after the GENERATOR SWITCH Clear signal and the ALLIANCE’S TIMEOUT will begin.

If an ALLIANCE wishes to call a TIMEOUT during a FIELD TIMEOUT, it must still do so within two (2) minutes of the GENERATOR SWITCH Clear signal preceding their MATCH, per T3.
TIMEOUTS are not transferrable between ALLIANCES, meaning an ALLIANCE cannot hand their designated TIMEOUT coupon to another ALLIANCE to use, however an ALLIANCE may use their own coupon for any purpose they wish.

If a Playoff MATCH is replayed because of an ARENA FAULT which rendered a ROBOT inoperable, the Head REFEREE has the option of calling a FIELD TIMEOUT.

11.9 Advancement Through the District Model

Information about advancement through the District Model has been removed. This section will be populated if/when appropriate for the 2021 season, via a Team Update. For more information, see the FIRST Inspire Blog, specifically “Update: 2020-2021 FIRST Season Extended.”

11.10 Advancement to the FIRST® Championship

Information about advancement to the FIRST Championship has been removed. This section will be populated if/when appropriate for the 2021 season, via a Team Update. For more information, see the FIRST Inspire Blog, specifically “Update: 2020-2021 FIRST Season Extended.”

11.11 FIRST® Championship: Additions and Exceptions

Information about additions and exceptions for the 2021 FIRST Championship events has been removed. This section will be populated if/when appropriate for the 2021 season, via a Team Update. For more information, see the FIRST Inspire Blog, specifically "Update: 2020-2021 FIRST Season Extended."
12 GLOSSARY

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACTIVATED</td>
<td>During TELEOP, the state of a SHIELD GENERATOR Stage that has reached CAPACITY and, if required, has the corresponding CONTROL PANEL action successfully completed.</td>
</tr>
<tr>
<td>ACTIVE DEVICE</td>
<td>any device capable of dynamically controlling and/or converting a source of electrical energy by the application of external electrical stimulus</td>
</tr>
<tr>
<td>ALLIANCE</td>
<td>a cooperative of up to four (4) FIRST Robotics Competition teams</td>
</tr>
<tr>
<td>ALLIANCE CAPTAIN</td>
<td>The designated student representative from each ALLIANCE in a Playoff MATCH</td>
</tr>
<tr>
<td>ALLIANCE STATION</td>
<td>a 30-ft. (~914 cm) wide by 10 ft. 9¼ in. (~328 cm) to 12 ft. 10¼ in. (~393 cm) deep infinitely tall volume formed by, and including the ALLIANCE WALL, the edge of the carpet, and ALLIANCE colored tape</td>
</tr>
<tr>
<td>ALLIANCE WALL</td>
<td>The ALLIANCE WALL is the structure that separates ROBOTS from DRIVERS, COACHES, and HUMAN PLAYERS. It consists of three (3) PLAYER STATIONS, the LOADING BAY, and the POWER PORT. ALLIANCE WALLS define the short edges of the FIELD and, along with the guardrails, prevent ROBOTS from exiting the FIELD during the MATCH</td>
</tr>
<tr>
<td>ARENA</td>
<td>all elements of the game infrastructure that are required to play INFINITE RECHARGES: the FIELD, POWER CELLS, and all equipment needed for FIELD control, ROBOT control, and scorekeeping</td>
</tr>
<tr>
<td>ARENA FAULT</td>
<td>an error in ARENA operation</td>
</tr>
<tr>
<td>AUTO</td>
<td>The first phase of each MATCH is called Autonomous (AUTO) and consists of the first fifteen (0:15) seconds.</td>
</tr>
<tr>
<td>BACKUP TEAM</td>
<td>The team whose ROBOT and DRIVE TEAM replaces another ROBOT and DRIVE TEAM on an ALLIANCE during the Playoff MATCHES</td>
</tr>
<tr>
<td>BOTTOM PORT</td>
<td>a 10 in. (~25 cm) tall, 2 ft. 10 in. (~86 cm) wide rectangle. The bottom edge is 1 ft. 6 in. (~46 cm) above the carpet.</td>
</tr>
<tr>
<td>BOUNDARIES</td>
<td>3 in. (~8 cm) wide, 1 in. (~3 cm) tall steel barriers that divide the area inside the SHIELD GENERATOR into two (2) equal sized areas that are 6 ft. 9¼ in. (~208 cm) wide by 12 ft. ¾ in. (~368 cm) deep.</td>
</tr>
<tr>
<td>BUMPER</td>
<td>a required assembly which attaches to the ROBOT frame</td>
</tr>
<tr>
<td>BUMPER ZONE</td>
<td>the volume contained between the floor and a virtual horizontal plane 7½ in. (~19 cm) above the floor in reference to the ROBOT standing normally on a flat floor</td>
</tr>
<tr>
<td>BYPASSED</td>
<td>the state assigned to any ROBOT which is unable or ineligible to participate in that MATCH as determined by the FIRST Technical Advisor (FTA), LRI, or Head REFEREE</td>
</tr>
<tr>
<td>CAPACITY</td>
<td>the number of POWER CELLS, defined in Table 4-1, that must be scored to charge each Stage.</td>
</tr>
<tr>
<td>COACH</td>
<td>a precollege student or adult mentor member of the DRIVE TEAM who acts as a guide or advisor</td>
</tr>
<tr>
<td>Term</td>
<td>Definition</td>
</tr>
<tr>
<td>--------------------------</td>
<td>--</td>
</tr>
<tr>
<td>COMPONENT</td>
<td>any part in its most basic configuration, which cannot be disassembled without damaging or destroying the part or altering its fundamental function</td>
</tr>
</tbody>
</table>
| CONTROL | A ROBOT is in CONTROL of a POWER CELL if:
A. the POWER CELL is fully supported by the ROBOT,
B. the POWER CELL travels across the FIELD such that when the ROBOT changes direction, the POWER CELL travels with the ROBOT, or
C. the ROBOT is holding a POWER CELL against a FIELD element in attempt to guard or shield it. |
<p>| CONTROL PANEL | a 2 in. (~5 cm) tall, 2 ft. 8 in. (~81 cm) diameter disk constructed of two pieces of ¼ in. (~6 mm) thick polycarbonate, spaced apart by ten ½ in. (~13 mm) diameter metal spacers at regular intervals. |
| CORRAL | the collection area for scored POWER CELLS located at the rear base of the POWER PORT |
| COTS | Commercial off the Shelf, a standard (i.e. not custom order) part commonly available from a VENDOR for all teams for purchase |
| CUSTOM CIRCUIT | any electrical COMPONENT of the ROBOT other than motors, pneumatic solenoids, roboRIO, PDP, PCM, VRM, RSL, 120A breaker, motor controllers, relay modules (per R29-B), wireless bridge, electrical solenoid actuators, or batteries |
| DISABLED | the state in which a ROBOT is commanded to deactivate all outputs, rendering the ROBOT inoperable for the remainder of the MATCH |
| DISQUALIFIED | the state of a team in which they receive zero (0) MATCH points and zero (0) Ranking Points in a Qualification MATCH or causes their ALLIANCE to receive zero (0) MATCH points in a Playoff MATCH |
| DRIVER | a precollege student member of the DRIVE TEAM who is an operator and controller of the ROBOT |
| DRIVE TEAM | a set of up to five (5) people from the same FIRST Robotics Competition team responsible for team performance for a specific MATCH. |
| ENDDGAME | The final thirty (0:30) seconds of TELEOP |
| ENERGIZED | Stage 3 ACTIVATED |
| FABRICATED ITEM | any COMPONENT or MECHANISM that has been altered, built, cast, constructed, concocted, created, cut, heat treated, machined, manufactured, modified, painted, produced, surface coated, or conjured partially or completely into the final form in which it will be used on the ROBOT |
| FIELD | 26 ft. 11¼ in. (~821 cm) by 52 ft. 5¼ in. (~1598 cm) carpeted area bound by and including the inward- and upward-facing surfaces of the guardrails and inward-facing surfaces of the ALLIANCE WALLS (except Chute surfaces and any surface beyond the face of the POWER PORT) |
| FIELD STAFF | REFEREES, FTAS, or other staff working around the FIELD |
| FMS | the electronics core responsible for sensing and controlling the FIRST Robotics Competition FIELD. The FMS encompasses all FIELD electronics, including computers, REFEREE touchscreens, wireless access point, sensors, stack lights, E-Stops, etc. |</p>
<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>FOUL</td>
<td>a credit of three (3) points towards the opponent’s MATCH score</td>
</tr>
<tr>
<td>FRAME PERIMETER</td>
<td>fixed, non-articulated structural elements of the ROBOT contained within the BUMPER ZONE</td>
</tr>
<tr>
<td>FTA</td>
<td>a FIRST Technical Advisor</td>
</tr>
<tr>
<td>GENERATOR SWITCH</td>
<td>a 7 ft. 6 in. (~229 cm) wide, 10 ft. 1½ in. deep (~309 cm), and 4 ft. 6 in. (~137 cm) tall assembly that swings from the top of the SHIELD GENERATOR.</td>
</tr>
<tr>
<td>HANDLE</td>
<td>a structure that consists of a RUNG and the supporting structure below the horizontal beam of the GENERATOR SWITCH.</td>
</tr>
<tr>
<td>HANGING</td>
<td>A ROBOT that five (5) seconds after the ARENA timer displays zero (0) following TELEOP, it is fully supported (either directly or transitively) by its GENERATOR SWITCH.</td>
</tr>
<tr>
<td>HUMAN PLAYER</td>
<td>a pre-college student DRIVE TEAM member who acts as a POWER CELL manager</td>
</tr>
<tr>
<td>INITIATION LINE</td>
<td>a white tape line spanning the width of the FIELD and located 10 ft. (~305 cm) from the face of PLAYER STATION 2 to the near edge of the tape.</td>
</tr>
<tr>
<td>INNER PORT</td>
<td>a 1 ft. 1 in. (~33 cm) diameter circle concentric with and 2 ft. 5¼ in. (~74 cm) behind (i.e. on the ALLIANCE STATION side of) the OUTER PORT. The center is 8 ft. 2¼ in. (~249 cm) above the carpet.</td>
</tr>
<tr>
<td>KOP</td>
<td>Kit of Parts, the collection of items listed on the 2020 and 2021 Kickoff Kit checklists, distributed to the team via FIRST Choice in the 2020 and/or 2021 season, or paid for completely (except shipping) with a Product Donation Voucher (PDV) from the</td>
</tr>
<tr>
<td>LEVEL</td>
<td>the RUNG is within 8 degrees of horizontal.</td>
</tr>
<tr>
<td>LOADING BAY</td>
<td>a 6 ft. 6 in. (~198 cm) tall by 5 ft. (~152 cm) wide structure located between PLAYER STATIONS 2 and 3.</td>
</tr>
<tr>
<td>LOADING ZONE</td>
<td>a 5 ft. (~152 cm) wide, 2 ft. 6 in. (~76 cm) deep infinitely tall volume with a triangular base bounded by the LOADING BAY and ALLIANCE colored tape.</td>
</tr>
<tr>
<td>LRI</td>
<td>Lead ROBOT Inspector</td>
</tr>
<tr>
<td>MAJOR MECHANISM</td>
<td>a group of COMPONENTS and/or MECHANISMS assembled together to address at least one (1) game challenge: robot movement, game piece control, FIELD element manipulation, or performance of a scorable task without the assistance of another ROBOT.</td>
</tr>
<tr>
<td>MATCH</td>
<td>a two (2) minute and thirty (30) second period of time in which ALLIANCES play INFINITE RECHARGE</td>
</tr>
<tr>
<td>MECHANISM</td>
<td>a COTS or custom assembly of COMPONENTS that provide specific functionality on the ROBOT</td>
</tr>
<tr>
<td>MXP</td>
<td>myRIO Expansion port, the expansion port on the roboRIO</td>
</tr>
<tr>
<td>OPERATIONAL</td>
<td>when the ALLIANCE’S ENDGAME SCORE is ≥ sixty-five (65) points.</td>
</tr>
<tr>
<td>OPERATOR CONSOLE</td>
<td>the set of COMPONENTS and MECHANISMS used by the DRIVERS and/or HUMAN PLAYER to relay commands to the ROBOT</td>
</tr>
<tr>
<td>OUTER PORT</td>
<td>a regular hexagon that measures 2 ft. 6 in. (~76 cm) in height. The center of the OUTER PORT is 8 ft. 2¼ in. (~249 cm) above the carpet.</td>
</tr>
<tr>
<td>Term</td>
<td>Definition</td>
</tr>
<tr>
<td>----------------------</td>
<td>---</td>
</tr>
<tr>
<td>PARK</td>
<td>A ROBOT that five (5) seconds after the ARENA timer displays zero (0) following TELEOP, it is fully supported (either directly or transitively) by the SHIELD GENERATOR and not in contact with any carpet outside its ALLIANCE’S RENDEZVOUS POINT, but without having met the criteria for HANGING.</td>
</tr>
<tr>
<td>PASSIVE CONDUCTORS</td>
<td>any device or circuit whose capability is limited to the conduction and/or static regulation of the electrical energy applied to it (e.g. wire, splices, connectors, printed wiring board, etc.)</td>
</tr>
<tr>
<td>PCM</td>
<td>a Pneumatic Control Module</td>
</tr>
<tr>
<td>PDP</td>
<td>a Power Distribution Panel</td>
</tr>
<tr>
<td>PINNING</td>
<td>preventing the movement of an opponent ROBOT by contact</td>
</tr>
<tr>
<td>PLAYER STATION</td>
<td>one (1) of three (3) assigned positions in an ALLIANCE WALL from where a DRIVE TEAM operates their ROBOT.</td>
</tr>
<tr>
<td>POSITION CONTROL</td>
<td>Rotate CONTROL PANEL so a specified color aligns with the sensor for at least five (5) seconds.</td>
</tr>
<tr>
<td>POWER CELL</td>
<td>a yellow 7 in. (~18 cm) diameter Medium Bounce Dino-Skin foam ball. The FIRST logo may be printed on each ball in black ink. The ball is made by Flaghouse (PN 1892 YEL) and sold by AndyMark (PN AM-4200a)</td>
</tr>
<tr>
<td>POWER PORT</td>
<td>a 10 ft. 2¼ in. (~310 cm) tall by 4 ft. (~122 cm) wide (excluding backboards) structure and is located between PLAYER STATIONS 1 and 2.</td>
</tr>
<tr>
<td>RED CARD</td>
<td>a penalty assessed for egregious ROBOT or team member behavior or rule violations which results in a team being DISQUALIFIED for the MATCH</td>
</tr>
<tr>
<td>REFEREE</td>
<td>an official who is certified by FIRST to enforce the rules of INFINITE RECHARGE</td>
</tr>
<tr>
<td>RENDEZVOUS POINT</td>
<td>a 6 ft. 9¾ in. (~208 cm) wide, 12 ft. 6¾ in. (~383 cm) deep, infinitely tall volume formed by ALLIANCE colored BOUNDARIES, ALLIANCE colored tape, and the black BOUNDARY pair that divides the Red and the Blue BOUNDARIES.</td>
</tr>
<tr>
<td>ROBOT</td>
<td>an electromechanical assembly built by the FIRST Robotics Competition team to play the current season’s game and includes all the basic systems required to be an active participant in the game –power, communications, control, BUMPERS, and movement about the FIELD.</td>
</tr>
<tr>
<td>ROTATION CONTROL</td>
<td>Rotate CONTROL PANEL at least three (3) (but no more than five (5)) complete revolutions in the same direction.</td>
</tr>
<tr>
<td>RP</td>
<td>a Ranking Point</td>
</tr>
<tr>
<td>RS</td>
<td>the Ranking Score</td>
</tr>
<tr>
<td>RSL</td>
<td>a ROBOT Signal Light</td>
</tr>
<tr>
<td>RUNG</td>
<td>a 1¼ in. schedule 40 aluminum pipe (1.66 in. (~4 cm) outer diameter) with two (2) exposed 4 ft. 7½ in. (~141 cm) long sections.</td>
</tr>
<tr>
<td>SECTOR</td>
<td>a 26 ft. 11¼ in. (~821 cm) wide by 10 ft. 2 in. (~310 cm) deep infinitely tall volume formed by an ALLIANCE’S ALLIANCE WALL, guardrail, and INITIATION LINE. The SECTOR includes the INITIATION LINE.</td>
</tr>
<tr>
<td>SHIELD GENERATOR</td>
<td>a 14 ft. 1½ in. (~431 cm) wide, 15 ft. ¾ in. (~459 cm) deep, and 9 ft. 6½ in. (~291 cm) tall structure located in the center of the FIELD, oriented at a 22.5 degree angle relative to the guardrails.</td>
</tr>
<tr>
<td>Term</td>
<td>Definition</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>--</td>
</tr>
<tr>
<td>SIGNAL LEVEL</td>
<td>circuits which draw ≤1A continuous and have a source incapable of delivering >1A, including but not limited to roboRIO non-PWM outputs, CAN signals, PCM Solenoid outputs, VRM 500mA outputs and Arduino outputs</td>
</tr>
<tr>
<td>STARTING CONFIGURATION</td>
<td>the physical configuration in which a ROBOT starts a MATCH</td>
</tr>
<tr>
<td>STARTING LINE</td>
<td>a white tape line spanning the width of the carpet and located 2 ft. 4 in. (~71 cm) from the back of the PLAYER STATION 2 diamond plate panel to the near edge of the tape.</td>
</tr>
<tr>
<td>SURROGATE</td>
<td>a team randomly assigned by the FIELD Management System to play an extra Qualification MATCH</td>
</tr>
<tr>
<td>TARGET ZONE</td>
<td>a 4 ft. (~122 cm) wide, 2 ft. 6 in. (~76 cm) deep infinitely tall volume with a triangular base bounded by the POWER PORT and ALLIANCE colored tape.</td>
</tr>
<tr>
<td>TECH FOUL</td>
<td>a credit of fifteen (15) points toward the opponent’s MATCH score</td>
</tr>
<tr>
<td>TECHNICIAN</td>
<td>an adult or precollege student member of the DRIVE TEAM who is a resource for ROBOT troubleshooting, setup, and removal from the FIELD</td>
</tr>
<tr>
<td>TELEOP</td>
<td>The second phase of each MATCH is called the Teleoperated Period (TELEOP) and consists of the remaining two minutes and fifteen seconds (2:15).</td>
</tr>
<tr>
<td>TIMEOUT</td>
<td>A TIMEOUT is a period of up to six (6) minutes between MATCHES which is used to pause Qualification or Playoff MATCH progression.</td>
</tr>
<tr>
<td>TRENCH</td>
<td>a 3 ft. ½ in. (~93 cm) tall, 4 ft. 8 in. (~142 cm) wide, and 3 ft. 5½ in. (~105 cm) deep structure that forms a 4 ft. 4 in. (~132 cm) wide, 2 ft. 4 in. (~71 cm) tall, and 2 ft. 6 in. (~76 cm) deep tunnel.</td>
</tr>
<tr>
<td>TRENCH RUN</td>
<td>a 4 ft. 7 ½ in. (~141 cm) wide, 18 ft. (~549 cm) deep, infinitely tall volume that is bounded by the guardrail, the edge of the TRENCH vertical support closest to the center of the FIELD, and ALLIANCE colored tape.</td>
</tr>
<tr>
<td>VENDOR</td>
<td>a legitimate business source for COTS items that satisfies all the criteria listed in the Robot Construction Rules’ Overview section.</td>
</tr>
<tr>
<td>VRM</td>
<td>a Voltage Regulator Module</td>
</tr>
<tr>
<td>YELLOW CARD</td>
<td>a warning issued by the Head REFEREE for egregious ROBOT or team member behavior or rule violations. A subsequent YELLOW CARD within the same tournament phase results in a RED CARD</td>
</tr>
</tbody>
</table>